跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/07/31 17:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:程達隆
研究生(外文):Da-Long Cheng
論文名稱:正交偏振光回饋對半導體雷射之影響研究
論文名稱(外文):Effects of Orthogonal Polarization Optical Feedback on Semiconductor Lasers
指導教授:嚴祖強
指導教授(外文):Tsu-Chiang Yen
學位類別:博士
校院名稱:國立中山大學
系所名稱:物理學系研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2003
畢業學年度:92
語文別:中文
論文頁數:211
中文關鍵詞:模躍遷半導體雷射偏振光脈衝光回饋縱模
外文關鍵詞:Longitudinal ModeSemiconductor LaserPolarizationMode-HoppingOptical PulseOptical Feedback
相關次數:
  • 被引用被引用:4
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
這個研究首先是觀察以正交偏振光回饋激發Fabry-Perot型半導體雷射產生單縱模高速光脈衝之可行性。藉由這個技術我們觀察到了470 MHz及3.76 GHz的單縱模高速光脈衝。研究過程中我們發展了一套修正版的理論模型來解釋原先由Otsuka 和陳志隆教授所提的理論中與實驗結果不合的地方。同時這個理論模型也解決了回饋距離太短的問題,使得這個技術有機會運用在現行的系統當中。

除此之外,這個研究也成功地以正交偏振光回饋的技術重建了遲滯型模跳躍雷射的失落縱模,而且能夠將雷射的功率及模態維持在原先的水準。同時我們也發現這個技術可以有效的抑制模躍遷的發生。

最後,我們也以此一技術進行了同調回饋雜訊的抑制。研究結果發現,利用–29 dB的正交偏振回饋光將可以順利的抑制同調回饋雜訊的產生並且讓雷射的模態壓縮比變得更好。就我們所知,這些發現將有助於提升半導體雷射在應用上的價值。
This research investigated the characteristics of single-mode optical pulses generated with orthogonal-polarization optical feedback (OPF) in Fabry-Perot type semiconductor lasers. Single-mode pulse trains with a pulse frequency of 470 MHz and 3.76 GHz were observed. A modified model was proposed to solve the inconsistency between the experimental results and the computer simulations of Otsuka and Chern’s model. These results also solve the problem of a round-trip feedback distance that is too short to enable the feedback system to be implemented, making this technology accomplishable in currently working systems.

Furthermore, this investigation recovered and maintained a stable oscillation of every missing longitudinal mode in a hysteresis type mode-hopping gap of a semiconductor laser. A special feature of this method is that both the laser power and spectral purity are preserved during mode recovery and mode switching. The experimental results also reveal that the OPF effectively suppressed mode-hopping in semiconductor lasers and drove the laser into a stable single-mode state.

Finally, this research employed OPF to suppress the intensity noise stimulated by coherent optical feedback in a semiconductor laser. At a coherent-feedback level as strong as –14 dB, an OPF ratio of –29 dB could return the laser to its primitive single mode from the multimode, yielding a spectral purity and relative intensity noise (RIN) even better than the solitary values. These discoveries constitute an important contribution to our understanding of applications of semiconductor lasers.
中文摘要……………………………………………………………i
英文摘要……………………………………………………………ii
致謝辭………………………………………………………………iii
目錄…………………………………………………………………iv
圖表目錄……………………………………………………………vi

第一章 簡介………………………………………………………1
第二章 半導體雷射在光回饋下之速率方程式…………………8
第2-1節 速率方程式………………………………………………9
第2-2節 同調光回饋下之速率方程式……………………………21
第2-3節 正交偏振光回饋下之速率方程式………………………28
第三章 半導體雷射在正交偏振光回饋下產生高速光脈衝之研究…59
第3-1節 產生高速光脈衝之技術…………………………………60
第3-2節 正交偏振光回饋產生高速光脈衝之原理………………63
第3-3節 實驗系統介紹……………………………………………65
第3-4節 正交偏振光回饋產生高速調變脈衝之研究……………73
第3-5節 正交偏振光回饋產生Giga-Hertz單縱模高速光脈衝之研究77
第四章 正交偏振回饋光對半導體雷射縱模之影響研究………107
第4-1節 半導體雷射模態說明…………………………………108
第4-2節 半導體雷射的縱模行為………………………………113
第4-3節 正交偏振光回饋對半導體雷射縱模分佈之影響……115
第4-4節 以正交偏振光回饋重建失落縱模(Missing Mode)之研究117
第4-5節 以正交偏振光回饋抑制模躍遷(Mode Hopping)之研究…121
第五章 正交偏振光回饋對半導體雷射同調回饋雜訊抑制之研究…153
第5-1節 克服同調光回饋所引起的雜訊之技術………………154
第5-2節 同調回饋雜訊抑制之研究……………………………159
第六章 結論………………………………………………………176
第七章 後續研究發展及建議……………………………………179

附錄A Runge-Kutta Method……………………………………184
附錄B正交偏振光回饋下單縱模半導體雷射速率方程式修正版之電腦模擬主程式………………………………………………………186
附錄C 正交偏振光回饋下多縱模半導體雷射速率方程式修正版之電腦模擬主程式………………………………………………………189
[1] R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, “Coherent light emission from GaAs junctions,” Phys. Rev. Lett., 9, 366 (1962). The Editor of Phys. Rev. received this paper on September 24, 1962.

[2] H. Yasaka and H. Kawaguchi, “Linewidth reduction and optical frequency stabilization of a distributed feedback laser by incoherent optical negative feedback,” Appl. Phys. Lett., 53, 1360 (1988).

[3] H. Yasaka, Y. Yoshikuni, and H. Kawaguchi, “FM noise and spectral linewidth reduction by incoherent optical negative feedback,” IEEE J. Quantum Electron., 27, 193 (1991).

[4] K. Otsuka and J.L. Chern, “High-speed picosecond pulse generation in semiconductor lasers with incoherent optical feedback,” Opt. Lett., 16, 1759 (1991).

[5] H. Kawaguchi, T. Igarashi, and Y. Takahashi, “Suppression of multiple pulse formaton in actively mode-locked laser diodes by gain quenching,” Opt. Lett., 20, 859 (1994).

[6] Tsu-Chiang Yen, Jer-Wei Chang, Jenn-Ming Lin and Rong-Jyh Chen, “High-Frequency Optical Signal Generation in a Semiconductor Laser by Incoherent Optical Feedback,” Opt. Commun., 150, 158 (1998).

[7] D. L. Cheng, T. C. Yen, J. W. Chang, and J. K. Tsai, “Generation of high-speed single-wavelength optical pulses in semiconductor lasers with orthogonal-polarization optical feedback,” Opt. Commun., 222, 363 (2003).

[8] R. W. Hellwarth, “Control of fluorescent pulsations.” In Advances in Qauntum Elextronics, J. R. Singer, ed. New York: Columbia University Press, 334 (1961).

[9] P. T. Ho, L. A. Glasser, E. P. Ippen, and H. A. Haus, “Picosecond pulse generation with a cw GaAlAs laser diode,” Appl. Phys. Lett., 33, 241 (1978).

[10] H. Ito, H. Yokoyama, S. Murata, and H. Inaba, “Picosecond optical pulse generation from an r.f. modulated AlGaAs d.h. diode laser,” Electron. Lett., 15, 738 (1979).

[11] H. Statz and G. A. deMars, pp. 530 in Quantum Electronics, ed. C. H. Townes. New York: Columbia University Press (1960).

[12] H. Statz, C. L. Tang, and J. M. Lavine, “Spectral output of semiconductor lasers,”J. Appl. Phys., 35, 2581 (1964).

[13] W. Streifer, D. R. Scifres, and R. D. Burnham, “Analysis of diode laser properties,” IEEE J. Quantum Electron., 18, 1918 (1982).

[14] R. F. Broom, E. Mohn, C. Risch, and René Salathé, “Microwave self-modulation of a diode laser coupled to an external cavity,” IEEE J. Quantum Electron., 6, 328 (1970).

[15] R. Lang, and Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. of Quantum Electron., 16, 347 (1980).

[16] O.Hirota, and Y.Suematsu, “Noise properties of injection lasers due to reflected waves,” IEEE J. Quantum Electron., 15, 142 (1979).

[17] R. O. Miles, A. Dandridge, T. G. Giallorenzi, H. F. Taylor, and A. B. Tveten, “Feedback-Induced Line Broadening in CW Channel-Substrate Planar Laser-Diodes,” Appl. Phys. Lett., 37, 990 (1980).

[18] R. W. Tkach, and A. R. Chraplyvy, “Regimes of feedback effects in 1.5 um distributed feedback lasers,” J. Lightwave Tech., 4, 1655 (1986).

[19] G. Huyet, S. Balle, M. Giudici, C. Green, G. Giacomelli, and J. R. Tredicce, “Low-frequency fluctuations and multimode operation of a semiconductor laser with optical feedback,” Opt. Commun., 149, 341 (1998).

[20] D. Lenstra, B. H. Verbeek, and A. J. den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron., 21, 674 (1985).

[21] G. P. Agrawal, “Line narrowing in a single-mode injection laser due to external optical feedback,” IEEE J. Quantum Electron., 20, 468 (1984).

[22] C. Risch and C. Voumard, “Self-pulsation in the output intensity and spectrum of GaAs-AlGaAs cw diode lasers coupled to a frequency-selective external optical cavity,” J. Appl. Phys., 48, 2083 (1977).

[23] P. Besnard, B. Meziane, K. Aitameur, and G. Stephan, “Microwave-Spectra in External-Cavity Semiconductor-Lasers - Theoretical Modeling of Multipass Resonances,” IEEE J. Quantum Electron., 30, 1713 (1994).

[24] T. Sano, “Antimode Dynamics and Chaotic Itinerancy in the Coherence Collapse of Semiconductor-Lasers with Optical Feedback,” Phys. Rev. A, 50, 2719 (1994).

[25] A. Hohl and A. Gavrielides, “Bifurcation Cascade in a Semiconductor-Laser Subject to Optical Feedback,” Phys. Rev. Lett., 82, 1148 (1999).

[26] A. Gavrielides, T. C. Newell, V. Kovanis, R. G. Harrison, N. Swanston, D. J. Yu, and Lu-WP, “Synchronous Sisyphus Effect in Diode-Lasers Subject to Optical Feedback,” Phys. Rev. A, 60, 1577 (1999).

[27] E. A. Viktorov, “Multimode semiconductor laser with selective optical feedback, ” Opt. Lett., 25, 1576 (2000).

[28] H. Yasaka and M. Naganuma, “Lasing mode behavior of a single-mode MQW laser injected with TM polarized light,” IEEE J. Quantum Electron., 29, 361 (1993).

[29] W. H. Loh and C. L. Tang, “Numerical investigation of ultrahigh frequency polarization self-modulation in semiconductor lasers,” IEEE J. Quantum Electron., 27, 389 (1991).

[30] M. Ohtsu, Y. Otsuka, and Y. Teramachi, “Precise Measurements and Computer Simulation of Mode-Hopping Phenomena in a Semiconductor Laser,” Appl. Phys. Lett., 46, 108 (1985).

[31] G. P. Agrawal, “Gain nonlinearities in semiconductor lasers: Theory and application to distributed feedback lasers,” IEEE J. Quantum Electron., 23, 860 (1987).

[32] G. R. Gray and R. Roy, “Bistability and mode hopping in a semiconductor laser,” J. Opt. Soc. Am. B, 8, 632 (1991).

[33] S. Tarucha and K. Otsuka, “Response of semiconductor laser to deep sinusoidal injection current modulation, ” IEEE J. Quantum Electron., 17, 810 (1981).

[34] 張哲維, “半導體雷射利用正交偏振光回饋的方法產生高速光振盪之研究,” 國立中山大學物理研究所, 碩士論文, (1994).

[35] 林振銘, “半導體雷射在正交偏振光回饋下之高速光振盪及鬆弛振盪之特性研究,” 國立中山大學物理研究所, 碩士論文, (1995).

[36] 蔡振凱, “半導體雷射中正交偏振光回饋之強度對縱模穩定性之研究,” 國立中山大學物理研究所, 碩士論文, (1998).

[37] G. P. Agrawal and N. K. Dutta, “Semiconductor Lasers,” Van Nostrand Reinhold, New York: Second Edition, Chapter 6 (1993).

[38] M. Ohtsu and Y. Teramachi, “Analyses of Mode Partition and Mode Hopping in Semiconductor Lasers,” IEEE J. Quantum Electron., 25, 31 (1989).

[39] G. P. Agrawal, “Mode-Partition noise and intensity correlation in a two-mode semiconductor laser,” Phys. Rev. A., 37, 2488 (1988).

[40] J. W. M. Biesterbos, A. J. Den Boef, W. Linders, and G. A. Acket, “Low-frequency mode-hopping optical noise in AlGaAs channeled Substrate lasers induced by optical feedback,” IEEE J. Quantum Electron., 19, 986 (1983).

[41] M. R. Alalusi and R. B. Darling, “Effects of nonlinear gain on mode-hopping in semiconductor laser diodes,” IEEE J. Quantum Electron., 31, 1181 (1995).

[42] H. Soda, K. Iga, C. Kitahara, and Y. Suematsu, “GaInAsP/InP Surface Emitting Injection Lasers,” Jpn. J. Appl. Phys., 18, 2329 (1979).

[43] D. L. Cheng, E. C. Liu, and T. C. Yen, “Single transverse mode operation of a self-seeded commercial multimode VCSEL,” IEEE Photon. Technol. Lett., 16, 1 (2004).

[44] J.S. Cohen, F. Wittgrefe, M.D.Hoogerland, and J.P. Woerdman, “Optical spectra of semiconductor laser with incoherence optical feedback,” IEEE J. Quantum Electron., 26, 982 (1990).

[45] C. Masoller, C. Cabeza and A.S. Schifino, “Effect of the Nonlinear Gain in the Visibility of a Semiconductor-Laser with Incoherent Feedback in the Coherence Collapsed Regime,” IEEE J. Quantum Electron., 31, 1022 (1995).

[46] S. Ogita, A. J. Lowery, R. S. Tucker, “Influence of asymmetric nonlinear gain on the transient intensities of longitudinal modes in long wavelegth Fary-Perot laser diodes,” IEEE J. Quantum Electron., 33, 198 (1997).

[47] A. P. Bogatov, P. G. Eliseev, and B. N. Sverdlov, “Anomalous interaction of spectral modes in a semiconductor laser,” IEEE J. Quantum Electron., 11, 510 (1975).

[48] D. Huhse, M. Schell, W. Utz, J. Kaessner, and D. Bimberg, “Dynamics of single-mode formation in self-seeded Fabry-Perot laser diodes,” IEEE Photon. Technol. Lett., 7, 351 (1995).

[49] M. Nakamura, T. Tamura, and T. Ozeki, “Elimination of laser noise and distortion induced by reflected wave,” in Tech. Dig. 3rd Int. Conf. IOOC, Washington, DC (1981).

[50] M. Yamada, N. Nakaya, and M. Funaki, “Characteristics of mode-hopping noise and its suppression with the help of electric negative feedback in semiconductor lasers,” IEEE J. Quantum Electron., 23, 1297 (1987).

[51] L. Bager, “All-electronic suppression of mode hopping noise in diode lasers,” IEEE Photon. Technol. Lett., 2, 899 (1990).

[52] A. Ohishi, N. Chinone, M. Ojima, and A. Arimoto, “Noise characteristics of high-frequency superposed laser diodes for optical disc systems,” Electron. Lett., 20, 821 (1984).

[53] A. Arimoto, M. Ojima, N. Chinone, A. Ohishi, and N. Ohnuki, “Optimum conditions for the high frequency noise reduction method in optical videodisk system,” Appl. Opt., 25, 1398 (1986).

[54] N. Kikuchi, Y. Liu, and J. Ohtsubo, “Chaos control and noise suppression in external-cavity semiconductor lasers,” IEEE Quantum Electron., 33, 56 (1997).

[55] Gregory D., VanWiggeren and Rajarshi Roy, “Communication with Chaotic Lasers,” Science, 279, 1198 (1998).

[56] Angela Hohl and Athanasios Gavrielides, “Experimental control of a chaotic semiconductor laser,” Opt. Lett., 23, 1606 (1998).

[57] S. Sivaprakasam and K. A. Shore, “Signal masking for chaotic optical communication using external-cavity diode lasers,” Opt. Lett., 24, 1200 (1999).

[58] K. M. Cuomo and A. V. Oppenheim, “Circuit Implementation of Synchronized Chaos with Applications to Communications,” Phys. Rev. Lett., 71, 65 (1993).

[59] Gregory D. VanWiggeren and Rajarshi Roy, “Communication with Chaotic Lasers,” Science, 279, 1198 (1998).

[60] Angela Hohl and Athanasios Gavrielides, “Experimental control of a chaotic semiconductor laser,” Opt. Lett., 23, 1606 (1998).

[61] S. Sivaprakasam and K. A. Shore, “Signal masking for chaotic optical communication using external-cavity diode lasers,” Opt. Lett., 24, 1200 (1999).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top