跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/30 19:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:朱俊吉
研究生(外文):Chun-Chi Chu
論文名稱:化學氣相沉積奈米碳管研究與分析
論文名稱(外文):Study on the CVD growth and analyses of Carbon Nanotube
指導教授:楊台發鄭德俊鄭德俊引用關係
指導教授(外文):Tai-Fa YoungDer-Jung Jang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:物理學系研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
畢業學年度:92
語文別:英文
論文頁數:82
中文關鍵詞:奈米碳管
外文關鍵詞:Carbon Nanotube
相關次數:
  • 被引用被引用:0
  • 點閱點閱:94
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用電漿化學氣相沉積法,以甲烷之碳氫化合物為碳源、鎳
金屬為催化劑成長奈米碳管。藉改變鎳催化劑膜厚、基板溫度、氣氛之壓力及基板偏壓的大小及成長時間等找出實驗之最佳條件。實驗成長之奈米碳管樣品,以SEM、TEM、RAMAN及FTIR分析奈米碳管的成長特
性。
實驗結果顯示,使用鎳膜為催化劑可成長出奈米碳管。成長過程中
催化劑扮演重要的角色 。由拉曼光譜及高解析TEM 分析顯示,此碳管具多層壁石墨結構。鎳顆粒提供碳管成長所需之觸媒,經氣相成長可得
垂直基板排列之順向奈米碳管。基板溫度於750℃至850℃間,為較佳之順向成長溫度範圍。微結構上的差異主要來自不同溫度或不同壓力,基板偏壓,及微波功率大小的影響,造成石墨層排列方式不同。
成長時間的增加並不會使碳管的長度加長,成長溫度越高結晶石墨
化的程度就越高,石墨化程度亦與功率大小成正比。而基板偏壓的改變對結晶石墨的程度並沒多大的影響。
In this work, carbon nanotubes (CNTs) have been synthesized by microwave chemical vapor deposition technique using Ni as catalyst and at different experimental parameters. Catalysts Ni plays an important role in the process of synthesizing carbon nanotubes. Sputtered Ni film can
agglomerate into uniformly distributed nanometer size particles, which can be employed to assist the growth of carbon nanotubes.
The effect of Ni catalyst on CNTs growth have been investigated and an optima Ni thickness has been found. There are series experiments performed in order to improve the CNT growth environment and a characteristics for
CNTs under the condition at 30 torr, 800℃, 600W and – 350V was observed.
The growth characteristics was evaluated with TEM, SEM, Raman and FTIR.
From Raman spectra, the degree of graphitization is proportional to growth temperature and microwave power. In addition to extending the growth time, the length of CNT did not increase.
中文摘要…………………………………………………......Ⅰ
Abstract…………………………………………………......Ⅱ
Content…………………………………………………….....Ⅲ
Table caption…………………………………………….....Ⅴ
Figure caption…………………………………………………Ⅵ
Chapter 1.
Introduction……….……………………………………………1
1.1 Structures of carbon nanotubes……………………….1
1.2 The growth methods of carbon nanotubes ……………3
1.2.1 Arc-discharge methods ……………………………….3
1.2.2 Laser vaporization ……………………………………4
1.2.3 Catalytic chemical vapor deposition………………5
1.3 Properties of carbon nanotubes……………………...6
1.3.1 Band structure of graphite………………………….6
1.3.2 Transport properties of graphite , carbon nanotube
and disorder carbon ……………………….…………7
1.3.3 Band structure of single-walled carbon
nanotubes…....................................8
1.3.4 Optical properties of carbon nanotubes………….9
1.4 IR and Raman spectra for carbon nanotubes……….10
Chapter 2. Growth Mechanisms of CVD carbon nanotube.13
2.1 Introduction …………………………………………….13
2.2 Fundamental of chemical vapor deposition ……….13
2.3 Growth mechanism of catalytically produced carbon
nanotubes….....................................16
Chapter3.Experimentals………………………………......18
3.1 Substrate preparation …..…………………... ……19
3.2 Microwave plasma CVD system………………………….20
3.3 Experimental parameter ……………………………….20
3.3.1 H2 plasma cleaning and nucleation……………….20
3.3.2 Growth of the carbon nanotube films…………….21
3.4 Characterization of carbon nanotube films ………21
3.4.1 Scanning Electron Microscopy (SEM)………………21
3.4.2 Raman Spectoscopy…………………………………….21
3.4.3 High Resolution Transmission Electron Microscopy
(HRTEM)………………………………………….............22
3.4.4 Fourier Transform Infrared Spectroscopy (FTIR)22
Chapter 4 . Results and Discussion………………………24
4.1 The effect of the Ni catalyst thickness …………24
4.2 The effect of gas pressure on growth of CNTs .…25
4.3 The effect of deposition temperature on growth of
CNTs.............................................27
4.4 The effect of microwave power on growth of CNTs.29
4.5 The effect of substrate bias on growth of CNTs…31
4.6 The effect of growth time on CNTs’ properties…33
4.7 HRTEM results of thesamp………………………34
4.8 Conclusions………………….……………………36
Reference ………………………………………………37
Reference
1. Peter J.F. Harris , Carbon Nanotubes and Related Structures, Cambridge University Press,(1999),Cambridge.
2. G.Benedek , P.Milani and V.G. Ralchenko , Nanostructure
Carbon for Advanced Applications, NATO Science Series
(2001),Sicily.
3. K. Tanaka, T. Yamabe, K. Fukui, The Science and
Technology of Carbon Nanotubes, Elsevier (1999),Tokyo.
4. Chih Ming Hsu, Chao Hsun Lin, Hui Lin Chang, Cheng Tzu
Kuo, Growth of the large horizontally-aligned carbon
nanotubes by ECR-CVD, Thin Solid Film 420-421(2002)225-229.
5. Charles.Kittel, Introduction to Solid State Physics, John
Wiley & Sons, N.Y.(1996)
6. Hong Xiao, Introduction to Semiconductor Manufacturing
Technology, Prentice-Hall, (2001).
7. SKOOG, Principles of Instrumental Analysis, fifth edition, Sanuders College Publishing .(1998), Urbana-Champaign.
8. C.F. Chen, C.L. Tsai, C.L. Lin, The characterization of
boron-doped carbon nanotube arrays, Diamond and Relat.
Mater. 12(2003) 1500-1504.
9. Weiqiang Han, Yoshio Bando, Keiji Kurashima, Tadao Sato,
Boron-doped carbon nanotubes prepared through a
substitution reaction, Chem. Phys. Lett. 299 (1999) 368-373
10. Minjae June, Kwang Yong Eun, Jae-Kap Lee, Young-Joon
Baik , Kwang-Ryeol Lee, Jong Wan Park, Growth of carbon
nanotubes by chemical vapor deposition, Diamond and Relat.
Mater. 10(2001) 1235-1240.
11. C.G. Hu, W.L. Wang, S.X. Wang, W. Zhu, Y. Li, Diamond
and Relat. Mater. 12(2003) 1295-1299.
12. B. I. Yakobson and R. E. Smalley, American Scientist 85,
(1997) 324.
13. 林敬二,儀器分析,美亞書版 (1997)
14. William T. Silfvast , Laser fundamentals , Cambridge
University Press(1996), Cambridge.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文