跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/24 11:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張永欣
研究生(外文):Yung-Hsin Chang
論文名稱:摻鐿釔鋁石榴石之雙鏡式環型共振腔雷射之研製
論文名稱(外文):The Study of a Multi-reentrant Two-mirror Yb:YAG Ring Laser
指導教授:王進賢
指導教授(外文):Chin-Hsien Wang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:物理學系研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:79
中文關鍵詞:光學鍍膜雙鏡式環型共振腔
外文關鍵詞:Yb:YAGMulti-reentrant Two-mirror Yb:YAG Ring Laser
相關次數:
  • 被引用被引用:3
  • 點閱點閱:99
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  近三十年來,Nd:YAG高功率固態雷射一直有無法取代的地位。Nd:YAG的激發波長為808nm,可以產生1064nm之雷射,屬於四能階雷射;Yb:YAG的激發波長則為940nm,可以產生1030nm之雷射,屬於準三能階雷射。相較於Nd:YAG雷射,Yb:YAG雷射具有較小的量子缺陷,其量子轉換效率較高,且產生的熱較少,能夠減少因熱造成的光學形變等問題,所以Yb:YAG具有取代Nd:YAG的潛力。

  本研究的主要目的是在以Yb:YAG晶體為雷射增益介質,承襲本實驗室研發的「多次再入射雙鏡式立體環形共振腔雷射系統」與技術成熟的「電子束蒸鍍系統」,我們希望能夠研製以Yb:YAG為增益介質的雙鏡式立體環形共振腔雷射系統。

  在本論文中,我先介紹多次再入射環型共振腔之應用、原理與精確解析解,再搭配模態匹配的數值模擬分析及雷射晶體的散熱系統,來克服準三能階雷射的熱效應問題。也會介紹我們針對此雷射系統所設計的光學鍍膜,運用本實驗室的電子束熱蒸鍍系統,成功地將光學薄膜鍍製於Yb:YAG晶體、輸入/輸出耦合透鏡等表面,完成雷射共振腔之光學元件的製作。更進一步地,實現雙鏡式立體環型共振腔雷射系統,產生1030nm紅外光雷射。本實驗架構未來可朝單縱膜雷射、脈衝雷射等方面研究,是一種極具研究價值與市場價值的雷射架構。
In the past thirty years, high power laser technology has been dominated by Nd:YAG as the gain medium. The pump wavelength of Nd:YAG is 808nm, and the lasing wavelength is 1064nm. It is categorized as four-level laser. The pump wavelength of Yb:YAG is 940nm, and the lasing wavelength is 1030nm. It falls into quasi-three-level laser category. Because Yb:YAG have higher quantum efficiency and less surplus heat, it have the potential to replace Nd:YAG.

The purpose of this study is to develop a multi-reentrant two-mirror Yb:YAG ring laser. In this thesis, we will introduce multi-reentrant two-mirror ring laser. The thermal problem of quasi-three-level laser was overcome by multi-wavelength coating on gain medium and input/output couplers, numerical simulation for mode match, and efficient TE-cooling for laser crystal.

This symmetrical two-mirror figure “8” ring cavity has the merit of compact, few optical elements, and easy design. The 1030nm output laser of our ring cavity promises to make the design widely applicable to solid-state lasers, such as single longitudinal lasers and mode-locked lasers.
中文摘要…………………………………………………………………….i
英文摘要……………………………………………………………………ii
目錄……………………………………………………………………...…iii
圖目錄……………………………………………………………………...v
表目錄……………………………………………………………………..vii

第一章 緒論…………………………………………………………………1
第二章 多次再入射之雙鏡式環型共振腔之原理…………………………3
2.1 Yb:YAG雷射晶體……………………………………………3
2.2 能階模型…………………………………………….………..9
2.3 準三能階雷射與四能階雷射的比較……………………….11
2.4 Yb:YAG與Nd:YAG之比較…………………………...……13
第三章 雷射鏡與晶體之光學鍍膜……………………………………..…16
3.1 光學薄膜材料……………………………………………….16
3.2 鍍膜系統…………………………………………………….20
3.3 光學監控…………………………………………………….26
3.4 薄膜紀錄檔之自動化分析…………………………….……36
3.5 晶體之金相製備…………………………….………………41
3.6 雷射晶體與雷射共振腔之光學鍍膜設計…………….……46
第四章 Yb:YAG雙鏡式環型共振腔雷射…………………………...……59
4.1 模態匹配數值模擬分析………………………………….…60
4.2 雷射晶體散熱系統之設計………………………………….64
4.3 Yb:YAG雷射特性量測……………………………..………68
第五章 結論…………………………………………………………..……74
參考文獻………………………………………………………..………….75
中英文對照表………………………………………………………….…..77
[1]L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Kurpke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quant. Electron., 29, 4, 1179 (1993)
[2]P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett., 16, 14, 1089 (1991)
[3]G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, “Spectral and lasing investigations of garnets with Yb3+ ions,” Sov. Phys. JETP, 42, 440 (1975)
[4]T. Y. Fan, “Aperture guiding in quasi-three-level lasers,” Opt. Lett., 19, 8, 554 (1994)
[5]T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quant. Electron., 29, 6, 1457 (1993)
[6]D. S. Sumida and T. Y. Fan, “Room-temperature 50-mJ/pulse side-diode-pumped Yb:YAG laser,” Opt. Lett., 20, 23, 2384 (1995)
[7]U. Brauch, A. Giesen, M. Karszewski, Chr. Stewen, and A. Voss, “Multiwatt diode-pumped Yb:YAG thin disk laser continuously tunable between 1018 and 1053 nm,” Opt. Lett., 20, 7, 713 (1995)
[8]H. Bruesselbach and D. S. Sumida, “69-W-average-power Yb:YAG laser,” Opt. Lett., 21, 7, 480 (1996)
[9]T. Taira, W. M. Tulloch, and R. L. Byer, “Modeling of quasi-three-level lasers and operation of cw Yb:YAG lasers,” Appl. Opt., 36, 9, 1867 (1997)
[10]C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, “High-average-power 1-μm performance and frequency conversion of a diode-end-pumped Yb:YAG laser,” IEEE J. Quant. Electron., 34, 10, 2010 (1998)
[11]E. C. Honea, R. J. Beach, S. C. Mitchell, and P. V. Avizonis, “183-W, M2=2.4 Yb:YAG Q-switched laser,” Opt. Lett., 24, 3, 154 (1999)
[12]T. Kasamatsu, H. Sekita, and Y. Kuwano, “Temperature dependence and optimization of 970-nm diode-pumped Yb:YAG and Yb:LuAG lasers,” Appl. Opt., 38, 24, 5149 (1999)
[13]V. V. Ter-Mikirtychev, M. A. Dubinskii, and V. A. Fromzel, “Q-switched, TEM00-mode, diode-pumped Yb3+:YAG laser with extended tunability,” Opt. Comm., 197, 403 (2001)
[14]T. Dascalu, T. Taira, and N. Pavel, “100-W quasi-continuous-wave diode radially pumped microchip composite Yb:YAG laser,” Opt. Lett., 27, 20, 1791 (2002)
[15]E. Innerhofer, T. Sdmeyer, F. Brunner, R. Hring, A. Aschwanden, R. Paschotta, C. Hnninger, M. Kumkar, and U. Keller, “60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser,” Opt. Lett., 28, 5, 367 (2003)
[16]D. S. Sumida and T. Y. Fan, “Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media,” Opt. Lett., 19, 1343 (1994)
[17]W. Koechner, “Solid-State Laser Engineering,” 4th ed., Springer, ch.7, 1996.
[18]李正中,“薄膜光學與鍍膜技術”,3rd ed.,藝軒出版社,2002.


[19]B. Vidal and E. Pelletier, “Nonquarterwave multilayer filters: optical monitoring with a minicomputer allowing correction of thickness errors,” Appl. Opt., 18, 22, 3857 (1979)
[20]B. Vidal, A. Fornier, and E. Pelletier, “Wideband optical monitoring of nonquarterwave multilayer filters,” Appl. Opt., 18, 22, 3851 (1979)
[21]H. Pulker, H. Schmidt, M. A. Aegerter, and M. A. Aegerter, “Coating on Glass,” Elsevier Science, ch.7, 1984.
[22]J. D. T. Kruschwitz, “Software tools speed optical thin-film design,” LaserFocusWorld, 39, 6, 157 (2003)
[23]A. Yariv, “Optical Electronics in Modern Communications,” 5th ed., Oxford University Press, 1997.
[24]陳穎慧,“多次再入射之雙鏡式環型共振腔雷射的研究”,國立中山大學光電工程研究所碩士論文,2001.
[25]E. Hecht, “Optics,” 3rd ed., Addison Wesley, ch.8, 1998.
[26]S. L. Huang, Y. H. Chen, P. L. Huang, J. Y. Yi, and H. Z. Cheng, “Multi-reentrant nonplanar ring laser cavity,” IEEE J. Quant. Electron., 38, 1301 (2002)
[27]http://www.americool.com/
[28]http://www.melcor.com/
[29]F. X. Kartner, U. Morgner, R. Ell, T. Schibli, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Ultrabroadband double-chirped mirror pairs for generation of octave spectra,” J. Opt. Soc. Am. B, 18, 6, 882 (2001)
[30]J. Hebling, E. J. Mayer, J. Kuhl, and R. Szipocs, “Chirped-mirror dispersion-compensated femtosecond optical parametric oscillator,” Opt. Lett., 20, 8, 919 (1995)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top