跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 12:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:康玉清
研究生(外文):Yu-Ching Kang
論文名稱:新超導體NaxCoO2‧yH2O的比熱研究
論文名稱(外文):Specific heat studies on NaxCoO2‧yH2O superconductor
指導教授:楊弘敦
指導教授(外文):Hung-Duen Yang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:物理學系研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:68
中文關鍵詞:低溫比熱NaxCoO2‧yH2O超導體
外文關鍵詞:NaxCoO2‧yH2Olow-temperature specific heatsuperconductor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:129
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
自從發現了高溫銅氧平面的超導體,許多學者便致力於尋找具類似性質的金屬氧化物超導體,如鈷氧化物及鎳氧化物超導體,而NaxCoO2‧yH2O (x ~ 0.35, y ~ 1.3)則是第一個鈷氧平面的新金屬氧平面超導體。在這篇論文中,我們對此新超導體進行了磁場下的比熱研究,在零磁場下,我們在大約4.7K也就是樣品相轉變溫度附近觀察到其超導特性,並且在低溫區發現其含有αT2的項,明顯表示出其屬於line node的超導體種類。當外加磁場給樣品時,可明顯的看到零磁場下的尖峰隨外加磁場的逐漸增大而逐漸變小。除此之外,Tc也隨著外加磁場在改變,而在實驗數據中我們觀察到有點奇異的H-T曲線,因此發生在混合能態中的多重相轉換的可能性也在討論之列。
Since the discovery of high superconducting transition temperature in layered copper oxides, many researchers have searched for similar behavior in other layered metal oxides, such as cobalt and nickel. The sodium cobalt oxyhydrate is the first cobalt-oxide layered superconductor.
We present the studies of low-temperature specific heat C(T, H) in NaxCoO2‧yH2O (x ~ 0.35, y ~ 1.3). At H = 0, a very sharp anomaly was observed at T ~ 4.7 K indicating the existence of bulk superconductivity. There exists an αT2 term in C(T, H=0) in the superconducting state manifesting the line nodal superconducting order parameter. The feature at the superconducting transition is rather sharp, becoming broad and strongly suppressed in an applied magnetic field. The transition temperature also changed in an applied magnetic field. Thus an abrupt change of slope in H vs. Tc curve was observed. Possible scenarios such as the multiple phase transitions in the mixed state are discussed.
Abstract..................................................i
Content.................................................iii
List of Figures..........................................iv
List of Tables...........................................vi
Chapter One: Introduction.................................1
Chapter Two: Theory.......................................7
2.1 Destruction of superconductivity by magnetic fields...7
2.2 Models of the specific heat..........................11
Chapter Three: Experiment Details........................18
3.1 Sample synthesis and characterization................18
3.2 Specific heat system.................................20
3.3 Calibration of the calorimeter.......................39
Chapter Four: Experimental Results and Data Analysis.....43
4.1 Sample handling......................................43
4.2 Analysis of experimental data........................45
4.3 Discussion...........................................63
Chapter Five: Conclusion...............................................66
Reference................................................67
1 H. Kamerlingh Onnes, Akad. Van Wetenschappen (Amsterdam) 14, 113, 818 (1911)
2 J. Bardeen, L. N. Cooper and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957)
3 J. G. Bednorz and K. A. Müller, Z. Phys. B 64, 189 (1986)
4 M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu, Phys. Rev. Lett. 58, 908 (1987)
5 A. Schilling, M. Cantoni, J. D. Guo, and H. R. Ott, Nature 363, 56 (1993)
6 C. W. Chu, L. Gao, F. Chen, Z. J. Huang, R. L. Mrng, and Y. Y. Xue, Nature 362, 226 (1993)
7 K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R. A. Dilanian, and T. Sasaki, Nature 422, 53 (2003)
8 Y. Kobayashi, M. Yokoi, and M. Sato, J. Phys. Soc. Jpn. 72, 2161 (2003)
9 T. Waki, C. Michika, M. Kato, K. Yoshimura, K. Takada, H. Sakurai, E. Takayama-Muromachi, and T. Sasaki, cond-mat/0306036
10 T. Fujimoto, G. Q. Zhang, Y. Kitaoka, R. L. Meng, J. Cmaidalka, and C. W. Chu, Phys. Rev. Lett. 92, 047004 (2004)
11 K. Ishida, Y. Ihara, Y. Maeno, C. Michioka, M. Kato, K. Yoshimura, K. Takada, T. Sasaki, H. Sakurai, and E. Takayama-Muromachi, J. Phys. Soc. Jpn. 72, 3041 (2003)
12 I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B 56, 12685 (1997)
13 R. E. Schaak, T. Klimczuk, M. K. Foo, and R. J. Cava, Nature 424, 527 (2003)
14 Y. Wang, N. S. Ragodo, R. J. Cava, and N. P. Ong, Nature 423, 425 (2003)
15 N. W. Ashcroft and N. D. Mermin, in Solid State Physics, W. B. Saunders Company, Philadelphia (1976)
16 G. E. Volovik, JETP Lett. 58, 469 (1993)
17 K. Yamada, S. Wakimoto, G.. Shirane, C. H. Lee, M. A. Kastner, S. Hosoya, M. Greven, Y. Endoh, and R. J. Birgeneau, Phys. Rev. Lett. 75, 1626 (1995)
18 X. K. Chen, J. C. Irwin, H. J. Trodahl, T. Kimura, and K. Kishio, Phys. Rev. Lett. 73, 3290 (1994)
19 N. Momono and M. Ido, Physica C 264, 311 (1996)
20 C. Caroli, P. G. deGeens, and J. Matricon, Phys. Lett. 9, 307 (1964)
21 M. Prohammer, A. Perez-Gonzalez, and J. P. Carbotte, Phys. Rev. B 47, 15152 (1993)
22 A. Junod, in Physical Properties of HTSCⅡ, edited by D. Ginsberg
23 N. E. Phillips, R.A. Fisher and J. E. Gordon, in Progress in low temperature Physics, edited by D. F. Brewer, Vol. 13, pp.267-357 (1992)
24 J. P. Emerson, R. A. Fisher, and N. E. Phillips et al., Phys. Rev. B 49, 9256 (1994)
25 D. Sanchez, A. Junod, J. –Y. Genoud, T. Graf, and J. Muller, Physica C 200, 1 (1992)
26 T. E. Mason, G. Appli, S. M. Hayden, A. P. Ramires, and H. A. Mook, Phys. Rev. Lett. 71, 919 (1993)
27 R. A. Fisher and J. E. Gordon et al., Physica C 252, 237 (1995)
28 K. A. Moler, D. L. Sisson, J. S. Urbach, and M. R. Beasley et al., Phys. Rev. B 55, 3954 (1997)
29 C. Kittle, in Introduction to Solid State Physics, edited by J. Wiley, SEA Pte. Ltd., Singapore (1986)
30 S. Nishizaki, Y. Maeno, and Z. Mao, J. Phys. Soc. Jpn. 69, 572 (2000)
31 H. Sakurai, K. Takada, S. Yoshii, T. Sasaki, K. Kindo, and E. Takayama-Muromachi, Phys. Rev. B 68, 132507 (2003)
32 S. J. Chen, C. F. Chang, H. L. Tsay, H. D. Yang, and J. –Y. Lin, Phys. Rev. B 58, R14753 (1998)
33 M. M. Maśaka, M. Mierzejewski, B. Andrzejewski, M. L. Foo, T. Klimczuk, and R. J. Cava, cond-mat/0402503
34 F. Bouquet, R. A. Fisher, N. E. Phillips, D. G. Hinks, and J. D. Jorgensen, Phys. Rev. Lett. 87, 047001 (2001)
35 H. D. Yang J. –Y. Lin, H. H. Li, F. H. Hsu, C. –J. Liu, S. –C. Li, R. –C. Yu, and C. –Q. Jin, Phys. Rev. Lett. 87, 167003 (2001)
36 J. –Y. Lin, P. L. Ho, H. L. Huang, P. H. Lin, Y. –L. Zhang, R. –C. Yu, C. –Q. Jin, and H. D. Yang, Phys. Rev. B 67, 52501 (2003)
37 H. D. Yang and J. –Y. Lin, J. Phys. Chem. Solid. 62, 1861 (2001)
38 B. Lorenz, J. Cmaidalka, R. L. Meng, and C. W. Chu, Physica C 402, 106 (2004)
39 Y. G. Shi, J. Q. Li, H. C. Yu, Y. Q. Zhou, H. R. Zhang, and C. Dong, Supercond. Sci. Technol. 17, 42 (2004)
40 T. Sasaki, P. Badica, N. Yoneyama, K. Yamada, K. Togano, and N. Kobayashi, cond-mat/0402355
41 A. M. Clogston, Phys. Rev. Lett. 9, 266 (1962)
42 B. S. Chandrasekhar, Appl. Phys. Lett. 1, 7 (1962)
43 M. N. Iliev, A. P. Litvinchuk, R. L. Meng, Y. Y. Sun, J. Cmaidalka, and C. W. Chu, Physica C 402, 239 (2004)
44 R. Jin, B. C. Sales, P. Khalifah, and D. Mandrus, Phys. Rev. Lett. 91, 217001 (2003)
45 G. Cao, C. Feng, Y. Xu, W. Lu, J. Shen, M. Fang, and Z. Xu, J. Phys. Condens. Matter 15, L519 (2003)
46 G. Baskaran, Phys. Rev. Lett. 97, 97003 (2003)
47 Q. –H. Wang, D. –H. Lee, and P. A. Lee, Phys. Rev. B 69, 092504 (2004)
48 A. Tanaka and X. Hu, Phys. Rev. Lett. 91, 257006 (2003)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top