跳到主要內容

臺灣博碩士論文加值系統

(3.235.174.99) 您好!臺灣時間:2021/07/24 18:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳盈絢
研究生(外文):Ying-shiuan Chen
論文名稱:由電調制反射光譜研究不同光能量下s-i-n+砷化鎵之有效縮減質量
論文名稱(外文):The dependence of effective reduced mass on changed photon energy by electroreflectance spectroscopy of surface-intrinsic-n+ undoped GaAs
指導教授:王東波王東波引用關係
指導教授(外文):Dong-po Wang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:物理學系研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:52
中文關鍵詞:砷化鎵電調制反射光譜
外文關鍵詞:GaAselectroreflectance spectroscopy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:121
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
s-i-n+ 結構的 GaAs其電調制反射光譜中存在許多FKOs,而且對光譜進行快速傅立葉轉換後,可分離出相對於輕電洞與重電洞躍遷的peak,本文將在弱調制場的條件下,利用FKO的振盪週期與FFT的方法分析光譜,得到外加偏壓與電場關係,並進一步求得不同光能量與有效縮減質量之關係。
The electroreflectance (ER) of surface-intrinsic-n+ type doped GaAs has exhibited many Franz-Keldysh oscillations to enable the application of fast Fourier transform to separate the heavy and light-hole transitions. In this work, we can get the dependence of surface electric field on external biased voltage from analyzing the Franz- Keldysh oscillations and the way of fast Fourier transform on condition that weakly modulated field, further more we can get the dependence of effective reduced mass on changed photon energy.
第一章 導論………………………………………1
第二章 調制光譜…………………………………6
2-1介電函數與反射率…………………6
2-2電子躍遷理論…………………….10
2-3譜線圖形分析…………………….14
2-4 FKOs與漸進式……………………19
2-5傅立葉轉換的分析……………….27
第三章 實驗設計與操作……………………….31
3-1實驗樣品與能帶結構…………….31
3-2實驗架構與調制原理…………….37
第四章 實驗分析與討論……………………….41
4-1表面電場與外加偏壓分析……….41
4-2外加光能量對有效縮減質量影響.46
第五章 結論…………………………………….51
參考文獻……………………………………………52
1.M. Cardona, in Modulation Spectroscopy (Academic, New York, 1969).
2.D. E. Aspnes, in Handbook on Semiconductors, edited by M. Balkanski (North-Holland, New York, 1980), Vol.2, p. 109.
3.F. H. Pollak, in Handbook on Semiconductors, edited by M. Balkanski (North-Holland, New York, 1994).
4.H. Shen and M. Dutta, J. Appl. Phys. 78, 2151 (1995).
5.See, for example, R. N. Bhattacharya, H. Shen, P. Parayanthal, and F. H. Pollak, Phys. Rev. B 37, 4004 (1988).
6.C. Van Hoof, K. Deneffe, J. DeBoeck, D. J. Arent, and G. Borghs, Appl. Phys. Lett. 54, 608 (1989).
7.X. Yin, H. -M. Chen, F. H. Pollak, Y. Chan, P. A. Montano, P. D. Kirchner, G. D. Pettit and J. M. Woodall, Appl. Phys. Lett. 58, 260 (1991).
8.H. Shen, M. Dutta, L. Fotiadis, P. G. Newman, R. P. Moerkirk, W. H. Chang, and R. N. Sacks, Appl. Phys. Lett. 57, 2188 (1990).
9.M. Sydor, J. R. Engholm, M. O. Manasreh, C. E. Stutz, L. Liou, and K. R. Evans, Appl. Phys. Lett. 56, 1769 (1990).
10.T. M. Hsu, Y. A. Chen, M. N. Chang, N. H. Lu, and W. C. Lee, J. Appl. Phys. 75, 7489 (1994).
11.D. E. Aspnes and A. A. Studna, Phys. Rev. B 7, 4605 (1973).
12.V. L. Alperovich, A. S. Jaroshevich, H. E. Scheibler, and A. S. Terekhov, Appl. Phys. Lett. 71, 2788 (1997).
13.D. P. Wang and C. T. Chen, Appl. Phys. Lett. 67, 2069 (1995).
14.W. -H. Chang, T. M. Hsu, W. C. Lee, and R. S. Chuang, J. Appl. Phys. 83, 7873 (1998).
15.P. Jin and S. H. Pan, J. Appl. Phys. 88, 6429 (2000).
16.D. P. Wang, K. M. Huang, T. L. Shen, K. F. Huang, and T. C. Huang, J. Appl. Phys. 83, 476 (1998).
17.S. J. Chiou, Y. G. Sung, D. P. Wang, K. F. Huang, T. C. Huang, and A. K. Chu, J. Appl. Phys. 85, 3770 (1999).
18.D. E. Aspnes, Phys. Rev. 147, 554(1966)
19.J. S. Blakemore, J. Appl. Phys. 53(10),R123(1982)
20.D. P. Wang, K. R. Wang, K. F. Huang, and T. C. Huang, and A. K. Chu, Appl. Phys. Lett. 74, 457 (1999).
21.C. Hamaguchi, Basic Semiconductor Physics (Springer, Berlin, 2001)
22.B. O. Seraphin and N. Bottka, Phys. Rev, 145, 628 (1966).
23.D. E. Aspnes, Surf. Sci. 37, 418 (1973).
24.Ming-Fu Li, Modern Semiconductor Quantum Physics (1994)
25.D. E. Aspnes and A. A. Studna, Phys. Rev, B 7, 4605 (1973).
26.P. Y. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (New York, 1996, springer)
27.D. E. Aspnes, Phys. Rev. 166, 921 (1968)
28.Landolt-Bornstein Neumerical Data and Functional Relationships in Science and Technology, New Series, III/17a (Springer, Berlin, 1982).
29.C. Kittel, Introduction to solid state physics (Wiley, New York, 1996).
30.S. M. Sze, Semiconductor devices, physics and technology (Wiley, New York, 2002).
31.Jörg Hader,Norbert Linder, and Gottfried H. Döhler, Phys. Rev, B 55, 6960 (1997).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top