跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 15:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:梁劉玉葉
研究生(外文):Le-lea Liu
論文名稱:利用水生植物陽明柳去除電鍍廢水中重金屬
論文名稱(外文):Removal of heavy metals from electroplating wastewater by an aquatic plant Najas graminea Del
指導教授:李宗霖李宗霖引用關係
指導教授(外文):Chon Lin Lee
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋生物研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:83
中文關鍵詞:水生植物陽明柳吸附金屬電鍍廢水
外文關鍵詞:Aquatic plantAdsorptionHeavy metalsElectroplating wastewaterNajas graminea
相關次數:
  • 被引用被引用:5
  • 點閱點閱:572
  • 評分評分:
  • 下載下載:147
  • 收藏至我的研究室書目清單書目收藏:0
電鍍工業是台灣的一項重點工業,從前的電鍍工廠將含有重金屬之廢水直接排放到下水道,導致地下水、河川及海洋嚴重的污染;傳統重金屬處理方法必需加入大量化學藥品,導致產生含重金屬污泥,不但增加污泥處理的困擾,而且這些污泥若遇酸則會再度釋出重金屬而造成二次污染。
水生植物具有吸附重金屬的特性,利用水生植物來處理廢污水中的重金屬是有別於傳統的新穎方法。故本研究利用水生植物陽明柳處理實際電鍍工業廢水,使有毒重金屬含量能有效降低,並降低處理廢水中污泥量。本實驗結果顯示,在配製之有毒重金屬吸附平衡實驗方面,植物對於各個金屬之比吸附率(specific adsorption) 與其殘餘濃度之間的關係符合Langmuir 等溫吸附模式。其最大吸附量(maximal adsorption capacity,Ymax) 以 Cu=58.1mg/g為最大,其次依序為 Pb > Cd > Ni > Zn。而緩衝溶液存在下會嚴重影響到各金屬之吸附平衡,銅、鉛、鉻的最大吸附量Ymax明顯下降情形。
在電鍍廢水實驗方面:陽明柳對甲公司電鍍廢水金屬Cu溶液之最大吸
量為Ymax=20.7mg/g,遠小於配製金屬Cu 溶液最大吸附量Ymax =33.1 mg/g ,此推測因甲公司Cu電鍍廢水因含有鐵等背景污染物所以造成Ymax 下降。另由配製分別外加Fe=10mg/L及外加Fe=30mg/L金屬的Cu溶液。實驗結果顯示,背景污染物鐵離子添加濃度與Ymax 的下降程度成正相關的趨勢。亦即,Cu 金屬溶液所含鐵離子的濃度愈高,則對於吸附Cu 的Ymax 值影響越大。就此推論,甲公司電鍍廢水因含有Fe 24mg/L,其受影響的程度應居中,但實驗結果顯示其Ymax下降程度最多,故可推論甲公司Cu電鍍廢水中可能另含有其他背景污染物質。陽明柳對乙公司 Ni電鍍廢水實驗結果則顯示與實驗室配製溶液無大差異。
本研究的結果將有助益於植物對重金屬吸附過程瞭解,再者,利用植物陽明柳清除廢污水可美化環境,其在工程上運用有非常大的潛力,如果有效的應用水生植物處理電鍍廢水中重金屬將是一創新科技。
Electroplating industry is one important industries in Taiwan. Its wastewater has lead to pollution of the river, ocean, and underground water. Thus, the reduction of the concentration of heavy metals such as Cu, Zn, Ni, Cr, Pb etc. from wastewater is critical. Conventional strategies to remove the heavy metals involve adding abundant chemical agents which results in largy quantity of heavy metal sludge. Secondary pollution might occur as due to the heavy metal sludge contacted with acid.
Aquatic plants have been shown to uptake the heavy metals from the surrounding environment. This unique character is different from the conventional approach and could be applied for removing the heavy metals in wastewater.This study used an aquatic plant, Najas graminea Del, to remove the heavy metals from the prepared metal solution and electroplating wastewater. Our data revealed that the relationship between the specific adsorption and residual concentration of the heavy metal was best described by the Langmiur adsorption isotherm curve. The value of maximal adsorption capacity (Ymax) in copper is 58.1 mg/g. Without buffering, the sequential order for the Ymax in the prepared metal solution is Cu > Pb > Cd> Ni > Zn. The value of Ymax was with significantly reduced under buffering circumstance as compared with that no buffer.
In the electroplating wastewater containnig copper from company A, the value of Ymax was 20.7 mg/g, which was much smaller in prepared copper solution (Ymax =33.1 mg/g). Our further investigation showed that the background contaminatants especially iron in the electroplating wastewater have significant contribution to this discrepancy. In other set of experiments, we found that there is no significant difference between the electroplating wastewater and prepared solution for the adsorption of Ni.
Our results provide useful information the understanding the process for the Najas graminea in adsorption the heavy metals from electroplating wastewater. Futhermore, the application of Najas graminea to remove the pollution from wastewater can protect the enviroment from pollution. This innovative concept has the potential in practical application and could be trasferred into a novel technology to substitute the conventionally physical or chemical treatment for the electroplating wastewater.
目錄
章次 頁數
中文摘要 i
英文摘要 iii
表目錄 vi
圖目錄 vii
附錄目錄 viii
第一章:前言 1
第二章:文獻回顧 3
第三章 實驗材料與設備 10
3-1 植物的培養 10
3-2 試藥及材料 10
3-3 廢水來源 12
3-4 金屬溶液之配製 13
第四章 實驗方法 17
4-1 重金屬分析步驟 17
4-1-1 水生植物的前處理 17
4-1-2 調整 pH 值 17
4-1-3 接觸實驗(contacting experiment) 17
4-1-4 過濾分離 18
4-1-5 微波消化 18
4-1-6 原子吸收光譜之分析 18
4-1-7 重金屬的品質管制 19
4-2其他分析項目 19
第五章 結果與討論 21
5-1 動力學實驗部份 21
5-2 配製溶液部份 22
5-3 甲公司銅電鍍廢水 23
5-4 乙公司鎳電鍍廢水 25
第六章結論與建議 26
6-1 結論 26
6-2 建議 26
參考文獻 28
參考文獻

李國權、林慧玲,1989。水耕蔬菜營養失調常見症狀與診斷方法。養液栽培技術講習會專刊。第二輯:69-77。
林青谷,1997。利用水中植物去除廢水中有毒重金屬,碩士論文,國立中山大學海洋環境研究所。
柯清水,1989。水草叢書,翠湖水草哉培研究所出板。
黃政賢,1995。污水工程,高立圖書有限公司:227-276。
高銘木,1996。不同型態菌絲對銅、鎳、鉻離子去除效率之影響,第二十屆廢水處理技術研討會論文集:7-21。
萬桂竹、孫研章,1999。四種水生植物對鎘之反應與吸收,中華民國環境保護學會會誌 第二十二卷 第一期:11-20。
Anon. 1978. Baseline studies in the Alligator Rivers region. In ‘Summaries of Discussionns and Recommendations, Alligator Rivers region Workshop held at Jabiru 21-25 August 1978’:1-15. ( Environmental Research Institute of the Supervising Scientist Jabiru, Australi.)
Banerjee, K., P. N. Cheromisinooff, and S. L. Cheng. 1997 Adsorption kinetics of o-xylene by yash. Water Research 31(2):249-261.
Barcelo, J., M. D. Vazquez, and C. Poschenrieder. 1988. Structureal and ultrastructural disorders in cadmium-treated bush bean plants. New phytology 108:37-49.
Berkely, R. C. W. 1979. Chitin and their degradative enzymes. In Microbial Polysaccharides:205-236.
Bradfor, G. R., and A. L. Page. 1975. Trace element concentrations of sewage treatment plant effluents and sludge;the interactions with soils and uptake by plants. Journal Enviromental Quality 4:123-127.
Brady, D., and J. R. Duncan. 1994 Bioaccumulation of metal cations by Saccharomyces cerevisiae. Apply Microbilogy Biotechnology 41:149-154.
Desborough , G. A. 1995. Acetic acid leachability of lead from polluted draingage water in Colorado. U.S.Geological Survey (preliminary Report ). Open-File report:95-99.
Doyle, M. O., and M. L. Otte. 1977. Organism- indused accumulation of iron. Zinc and arsenic in wetland soils, Environmental Pollution 96:1-11.
Fox, R. W., G. G. Kelleher, and C. B. Kerr. 1977. Ranger Uranium Environmental Inquiry.Second Report. (Astralian Government Publishing Service: Canberra.)
Fourest E.and J. C. Roux. 1992. Heavy metal biosorption by fungalmycelial by-products : mechanisms and influence of pH. Apply Microbiology Biotechnology 37:399-403.
Griffin, R. A., R. R. Frost, A. K. Au, G. D. Robinson, and N. F. Shrimp. 1977. Attenuation of pollutants in municipal landfill leachate by clay minerals: heavy metal adsorption. Environmental Geological Notes 79:1-47.
Grover, M., M. S. Narayanaswamy, and J. Inst. 1982. Removal of hexavalent chromium by adsorption on flyash. Journal Instution English (India) Environmental English Divison 63(1):36-39.
Kapoor, A., and T. Viraraghavan. 1996. Treatment of metal industrial wastewater by fly ash and cement fixation. Journal Environmental English ASCE 122(3):243.
Kuyucak, N., and B. Volesky. 1989a. Accumulation of cobalt by marine alga. Biotechnology Bioenginerring 33:809-814.
Kuyucak, N., and B. Volesky. 1989b. The mechanism of cobalt biosorption.
Biotechnology Bioenginerring 33:809-814.
Lee C. L., T. C. Wang, C. H. Hsu, and A. A. Chiau. 1997. Heavy mrtals removal by promising local available aquatic plants in Tiawan,submitted (under review).
Leppert, D. 1990. Heavy metal sorption with clinoptilolite zeolite: alternatives for treating contaminated soil and water. Mining Enginerr 42(6): 604-608.
Maeda, S., and T. Skaguchi. 1990. Accumulatation and detoxification of toxic metal elements by alga, in I. Akatsuka, ed. introduction to applied Phycology, Academic Publishing, The Hauge:109-136.
Masri, M. S., and M. Friedman . 1974. Effect of chemical modfication of wool on metal ion binding. Journal Apply Polymer Science 18:2367-2377.
Matis, K. A., and A. I. Zouboulis. 1994. Flotation of cadmium-loaded biomass. Biotechnolgy Bioengnerring 44:354-360.
Mo, S. C., D. S. Choi, and J. W. Robinson. 1989. Uptake of mercury from aqueous solution by duckweed: The effects of pH, copper and humic acid. Journal Environmental Science Health 24(2):135-146.
Morley, A. W., 1981. A ‘Review of Jabiluka Environmental Studies.’(Pancontinental Mining Ltd:Sydeny, Australia.)
Mortimer, D. C., and A. Kudo. 1975. Interaction between aquatic plants and bed sediments in mercury uptake from flowing wanter. Journal Environmental Quality 4:491-495.
Muramoto, S., and Y. Oki. 1983. Removal of some heavy metals from polluted by water hyacinth (Eichhornia crassips). Chemosphere 30:170-177.
Nir, R., A. Gasith, and A. S. Perry. 1990.Cadmium uptake and Toxicity to water hyacinth: Effect of repeated exposures under controlled conditions. Bulletin Environmental Contamination Toxicology 44:149-157.
Niu, H., X. S. Xu, and J. Wang H. 1993. Removal of lead from aqueous solutions by penicillium biomass. Biotechnology Bioenginerring 42:785-787.
Onsoyen, E., and o. Skaugrud. 1990. Metal recovery using chitosan. Journal Chemical Technology Biotechnology 49:395-404.
Outridge, P. M., and B. N. Noller. 1991. Accumulation of toxic trace elements by freshwater vascular plants. Review of Environmental Contamination and Toxicology 121:1-63.
Panday, K. K., G. Prasad, and V. N. Singh.1984. Removal of Cr(VI) from aqueous solutions by adsorption on fly ash-wollastonite. Journal Chemical Technology Biotechnology A 34:367-374.
Randall, J. M., E. Hautala, and G. McDonald. 1978. Biding of heavy metal irons by formaldehyde-polymerize peanut skins. Journal Apply Polymer Science 22(2):379-387.
Randall, J. M., R. L. Bermann, V.Garrett, and A.c.Jr. Waiss. 1974a. Use of bark to remove heavy metal ions from waste solutions. Forest Product Journal 24(9):80-84.
Roy, D. P., N. Greenlaw, and B. S. Shane. 1993. Adsorption of heavy metals by green algae and groundrice hulls. Journal Environmental Science Health A 28(1):37-50.
Sabadell, J. E., and R. J. Krack. 1975. Adsorption of heavy metals from wastewater and sludge on forest residuals and forest produce waste. Water''s Interface withEnergy, Air, and Solids: Proceedings of the SecondNational Conference on Complete Water Reuse, Chicago, I:234-240.
Sajwan, K. S., and W. H. Ornes. 1994. Phytoavailability and bioaccumulation of cadmium in duckweed plants. Journal Environmental Science Health 28:1035-1044.
Santiago, I., V. P. Worland, E. Cazares-River, and F. Cadena. 1992. Adsorption of hexavalent chromium onto tailored zeolites. 47th Purdue Industrial Waste
Conference Proceedings: Lewis Publishers Incorporation:669-710.
Sanderson, N. T., D. V. Koontz, and A. W. Morley. 1983. The encology of the vegetation of the Megela Creek floodplain: upper section from Oenpellib road crossing to Nankeen Billabong. (Environmental Research Institute of the Supervising Scientist: Jabiru, Australia):1-39.
Sharma , C., G. S. Gupta, G. Prasad, and D. C. Rupainwar. 1990. Use of wollastonite in the removal of Ni(II) from aqueous solutions. Water Air Soil Pollution 49:69-79.
Sharma, D. C., and C. F. Forster. 1993. Removal of hexa-valent chromium using sphagnum moss peat. Water Research 27(7):1201-1208.
Srivastav, R. K., S. K. Gupta, K. D. P. Nigam, and P. Vasudevan. 1994. Treatment
of chromium and nickel in wastewater by using aquatic. Watter Research 28(7):1631-1638.
Stratton, G. W., and C. T. Corke. 1979. The effect of mercuric , cadmium and nickel ion combinations on a blue-green alga. Chemosphere 10:731-740.
Susan, E., J.Trudy,Bailey.
Vazquez, G., G. Antorrena, J. Gonzalez and M. D. Doval. 1994. Adsorption of heavy metal ions by chemically modified Pinus Pinaster bark. Bioresource Technology 48:251-255.
Viraraghavan, T., and A. Kapoor. 1994. Adsorption of mercury from wastewater by bentonite. Apply Clay Science 9:31-49.
Volesky, B., and I. Prasetyo. 1994. Cadmium removal in a biosorption column. Biotechnology Bioenginerring 43:1010-1015.
Wang, T. C., J. C. Weissman, G. Ramesh, R. Varadarajan, and J. R. Benemann. 1996. Heavy metals removal with water milfoil (Myriophyllum spicatum) in constructed wetland.
Whitton, B. A., P. J. Say, and J. D. Wehr. 1981. Use of plants to monitor heavy metal in rivers. (University of Durham, Department of Botany:Durham.):135-145.
Wilde, E. W., and J. R. Benemann. 1990. Use of bioaccumulation for heavy metal reclamation at SRS, final report, Savannah River sit.
Wilson, M. W., and R. G. Edyvean. 1994. Biosorption for the removal of heavy metals from industrial wastewaters. Environmental Biotechnolgy :89-91.
Wolverton, B. C., and R. C. McDonald. 1975. Water hyacin and alligator weeds for removal of lead and mercury from polluted waters. National Aeronautics and Space Administration (NASA) Report.
Wolverton, B. C., R. C. McDonald, and C.Rebeca. 1977. wastewater treatment utilizing Water hyacinths.In Process :205-208.
Wolverton, B. C., and R. C. McDonald. 1978. Water hyacinth sorption rates of lead, mercury and cadmium. ERL Report:170.
Yang, T. C,, and R. R. Zall. 1984. Absorption of metals by natural polymers generated from seafood processing wastes. Industry Enginerring Chemical Product Research Development 23:168-172.
Zaranyika, M. F., F. Mutoko, and H. Murahwa.1994. Uptakeof Zn, Co, Fe and Cr by water hyacinth (Eichhornia crassipes) in lake Chivero, Zimbabwe. The Science of the total Environment 153(7):117-121.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊