跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/07/31 15:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳沛玲
研究生(外文):Pei-ling Chen
論文名稱:紅牙魚或在台灣西部沿海主河口之分佈調查與發聲機制研究
論文名稱(外文):Distribution of the Otolithes ruber on the west coast of Taiwan and its sound produce mechanism
指導教授:莫顯蕎莫顯蕎引用關係
指導教授(外文):Hin-kiu Mok
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋生物研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:55
中文關鍵詞:被動聲納石首魚河口紅牙魚或發聲肌分布
外文關鍵詞:sonic musclepassive sonarSciaenidsestuaryOtolithes ruberdistrubtion
相關次數:
  • 被引用被引用:3
  • 點閱點閱:280
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
屬於經濟魚種的石首魚為海洋性魚類中發聲活動最為明顯的類群,因此可利用此特性作為調查石首魚之分佈情形的工具進而達到有效的漁業管理,因此確認發聲魚種所產生的聲音型態將有其重要性存在。在過去的調查中發現,雲林海域有八種型態的聲音(A~H type)出現,其中H 型態的頻率範圍可達8000Hz,在前人研究報中推測此型態的聲音可能為紅牙魚或 產生。在Connaughton (1994)和Sprague (2000)研究報中指出造成石首魚產生不同型態的聲音主要取決於發聲肌肌纖維的長度、重量、張力、蛋白質與肝醣含量的差異性,為了證實高頻聲音確實為紅牙魚或 (Otolithes rubber)所產生,本研究將分析比較在台灣西岸海域其他不同石首魚(紅牙魚或 、黃金鰭魚或 、白姑魚、中華叫姑魚、皮氏叫姑魚、丁氏叫姑魚與頓頭叫姑魚)發聲肌之長度、重量、蛋白質與肝醣含量差異,探討發聲肌在物理參數與能量的供應的差異是否為造成紅牙魚或 產生高頻鳴音之主要因素。在研究結果中發現紅牙魚或 的發聲肌長度(14.32 ±0.76 mm) 較其他石首魚小,在發聲肌重量上,紅牙魚或 與其他魚種並沒有顯著差異,但在重量上仍為最小的(2.33±1.00g )。紅牙魚或 在蛋白質(20.37 ±0.67 %)與肝醣(0.33 ±0.11 %)含量上高於其他的魚種的情形,且發聲肌肌纖維之截面積(272.69±81.44μm2)小於其他魚種推測纖細的肌纖維有利於產生較高的張力。
確定鳴音之發聲者確為紅牙魚或 所產生,因此可利用以被動聲納的方式調查其在台灣西海近岸河口(淡水河、頭前溪、大甲溪、濁水溪、曾文溪與高屏溪)之分佈情形。結果發現紅牙魚或 的鳴音活動會有季節上的差異。春季是鳴音活動最頻繁的季節且隨夏、秋、冬有遞減的情形。而在區域上分佈則以濁水溪為界有南北的差異,濁水溪、曾文溪與高屏溪的鳴音活動會高於大甲溪、頭前溪與淡水河。
Abstract
Sciaenids are a kind of economic oceanic fish with the most dynamic vocal activity. It is important to find out what type of sound a soniferous fish can make. Therefore, I used this acoustic character as a tool to study the distribution of sciaenids in order to manage their fisheries. In the previous researches, scientist found that there were eight types of sounds (A~H type) appearing on the coastal areas of Yunlin, and the frequency range of the H-type sound could reach to 8000Hz. This sound was suspected to be made by Otolithes ruber. Connaughton (1994) and Sprague (2000) mentioned that the differences of length, weight, and tension of the sonic muscle and the amount of protein and glycogen affect the types of sounds emitted. To reveal the producer of high-frequency sound, this research analyzed and compared the length, width, thickness and somatic of sonic muscle and the amount of protein and glycogen in seven sciaenid species occuring on the west coast of Taiwan (Johnius tingi, Johnius sina, Johnius amblycephalus, Johnius amblycephalus, Pennahia argentata, Chrysochir aureus, and Otolithes ruber), then to find if the differences of physic parameter and energy supplication are the major factors making O. ruber produce high frequency of sound. In this research, I found that the length of O. ruber’s sonic muscle was shorter than that other of sciaenids. However the weight of sonic muscle did not significantly differ although it was still the lightest one (2.33±1.00g). The amount of protein (20.37±0.67﹪) and glycogen (0.33±0.11﹪) in O. ruber was higher than that of other species and the cross section of sonic muscle fiber was smaller. These characteristics are suitable for O. ruber to make a high-frequency sound.
Because of the sound is believed to be made by rubber, so passive sonar was applied to investigate the distribution of this sound type on the estuaries along the west coast of Taiwan (Tam-Shui River, Tou-Chien River, Ta-Chia River, Cho-sui River, Zeng-Wen River, and Kao-Ping River) to represent distribution of O. ruber and its seasonal change of vocal activity. Acoustic activity reached it peak in spring then decreased through summer, autumn, and winter. More sounds were found in the estuaries south of the Cho-sui River (including Cho-sui, Zeng-Wen, and Kao-Ping River) than those north of this river (including Ta-Chia, Tou-Chien, and Tam-Shui River).
目錄
前言………………………………………………………………(1)
材料與方法………………………………………………………(5)
結果………………………………………………………………(10)
討論………………………………………………………………(14)
參考文獻…………………………………………………………(19)
Tables……………………………………………………………(21)
Figures……………………………………………………… …(25)
參考文獻
Caldwell, D. K. and M. C. Caldwell 1967. Underwater sounds associated with aggressive behavior in defense of territory by the pinfish, Lagodon rhomboids. Bull. S. Calif. Acad. Sci. 66: 69-75.

Connaughton, M. A. and M. H. Taylor 1994. Seasonal cycles in the sonic muscles of the weakfish, Cynoscion regalis. Fish. Bull., 92:697-702.

Connaughton, M. A. and M. H. Taylor 1995. Seasonal and daily cycles in sound production associated with spawning in the weakfish, Cynoscion regalis. Environ. Biol. Fish., 42: 233-240.

Connaughton, M. A., M. L. Fine and M. H. Taylor 1997. The effects of seasonal hypertrophy and atrophy on fiber morphology, metabolic substrate concentration and sound characterics of the weakfish sonic muscle. J. Exp. Biol., 200:2499-2457.

Fine, M. L., B. Bernard and T. M. Harris 1993. Functional morphology of toadfish sonic muscle fibers: Relationship to possible fiber division. Can. J. Zool., 71: 2262-2274.

Holt, G. J., S. A. Holt and C. R. Arnold 1985. Dial periodicity of spawning in sciaenids. Mar. Ecol. Prog. Ser.,27(1-2): 1-7.

Luczkovich, J. J., Sprague M. W., Johnson S. E., and Pullinger R. C. 1999. Delimiting spawning areas of weakfish Cynoscion regalis (family Sciaenidae) in Pamlico sound, North Carolina using passive hydroacoustic surveys. Bioacoustics, 10:143-160.

Lindstrom, K. and M. Lugli 2000. A quantitative analysis of the courtship acoustic behavior ans sound patterning in male sand goby, Pomatoschistus minutus. Environ. Biol. Fish.,58: 411-424.

Lobel, P. S 1992. Sound produced by spawning fishes. Environ. Biol. Fish., 33: 351-358.

Loesser, K. E., J. Rafi and M.L. Fine 1997. Embryonic, juvenile, and adult development of the toadfish sonic muscle. Anat. Rec., 249: 469-477.

Mok, H. K. and R. G. Gilmore 1983. Anylysis of sound production in estuarine aggregations of Pogonias cromis, Bairdiella chysoura and Cynoscion nebulosus (Sciaenidae). Bull. Inst. Zool. Acad. Sin.,22: 157-186.

Murat, J. C. and A. Serfaty 1974. Simply enzymatic determination of polysaccharide (Glycogen) content of animal tissues. Clin. Chem., 20:1576-1577.
Ono, R. D. and S. G. Poss 1982. Structure and innervation of the swimbladder musculature in the weakfish, Cynoscion regalis (Teleost:Sciaenidae). Can. J. Zool., 60:1955-1967.

Raso, D. S. 1991. A study of the peripheral innervation and muscle fiber types of Ictalurus nebulosus (Lesueur) and Ictalurus punctatus (Rafinesque). J. Fish Biol., 39: 257-272.

Sprague, M. W. and J. J Luczkovich. 2001. Do striped Cusk-Eels Ophidion marginatum (Ophidiidae) produce the “chatter” sound attributed to weakfish Cynoscion regalis (Sciaenidae)? Copeia, 3: 854-859.

Sprague, M. W. 2000. The single sonic muscle twitch model for the sound-production mechanism in the weakfish, Cynoscion regalis. J. Acoust. Soc. Am. 108(5):2430-2437.

Takemura, A. 1983 Acoustic behavior of clownfishes (Amphoprion Spp.) Bull. Fac. Fish. Nagasaki Univ., 54: 21-27.

Ueng, J. P. and B. Q. Huang 1998 Circadian rhythm of sound production in Japanese croaker, Argyrosomus japonicus. J. Fish. Soc. Taiwan, 25(4): 287-292.

Ueng, J. P., B. Q. Huang and H. K. Mok 1999. Ontogenetic changes of sound production in Japanese croaker, Argyrosomus japonicus (Sciaenidae). J. Fish. Soc. Taiwan, 26: 13-21.

白漢霖、邵廣昭、賴春福,1999. 拉漢世界魚類名典。水產出版社,p 1028。

沈世傑、李信徹、邵廣昭、莫顯蕎、陳春輝、陳哲聰1993台灣魚類誌。國立台灣大學動物學系,p 282。

莫顯蕎,黃寶貴,翁進坪,2001,漁業署農業科技專題計畫『濁水溪河口域石首魚類之分佈與漁業管理』報告書。

李宏泰2002 黒口發聲肌生殖是應之季節變化。國立台灣海洋大學漁業科學研究所碩士學位論文,61頁。

翁進坪. 1999. 日本銀身魚或 (Argyrosomus japonicus)(Sciaenidae) 生物聲學之研究。國立台灣海洋大學漁業科學系博士班論文,。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top