跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/08/02 16:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭俊雄
研究生(外文):Jiun-shiung Shiau
論文名稱:由烏賊骨片輪紋推算成長曲線之方法探討
論文名稱(外文):Establishing growth formula from cuttlebone stripes
指導教授:方新疇方新疇引用關係
指導教授(外文):Sun-chio Fong
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋生物研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:52
中文關鍵詞:甘培茲方程式.骨片輪紋帶長成長方程式輪紋外緣長
外文關鍵詞:cuttlebonelength of striped marginGompertz formulagrowth formulastriped area length
相關次數:
  • 被引用被引用:0
  • 點閱點閱:297
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
頭足類 (Cephalopods) 動物的生活史長久以來困擾著世界上的海洋生物學家, 漁業專家在管理魷魚資源時亦遭遇到許多困難。由於缺乏穏定的年齡形質,使得頭足類的成長方程式目前仍多數不清楚。在解剖學上,烏賊骨片 (cuttlebone) 上的輪紋層 (stripe layers) 在胚胎發育過程中類似双枚貝的外殼,應可提供年齡形質的資訊,但由於未知的原因,這方面的學術探討為數甚少。
本研究以骨片表面上的輪紋數代表日齡,以本托蘭斐 (von Bertalanffy, VBGF) 或甘培茲 (Gompertz) 成長方程式來推定其可能之成長模式。設計Visual Basic程式並整合AutoCAD軟體,成為量測虎斑烏賊 (Sepia pharaonic Ehrenberg, 1831) 個別骨片輪紋外緣長 (length of stripe margin, LSM, '') 及輪帶長 (stripe area length, SAL, ) 之半自動化測量系統,骨片數 (n = 21)。結果顯示:烏賊之成長尚在加速階段,並不適用傳統漁業所用之VBGF。本研究使用上述形質當作體長之指標,成功推算出甘培茲成長方程式分別為:
= 30.00*exp(-3.73*exp(-0.012*t))
'' = 23.18*exp(-4.27*exp(-0.015*t))
又求得體長與年齡形質之功能性迴歸方程式 (Functional regression equation) 如下:
= - 1.26842+0.772872*
= - 0.78286+0.629736*
用來換算SAL (或LSM) 與體長(L)間的關係。
不管以SAL或LSM,皆看不出有李氏現象(Lee’s phenomenon)存在,顯示虎斑烏賊的死亡率並不因體形的改變而有顯著性的不同。季節性的變化亦不明顯。
期待以本研究在技術與理論上之初步探討,能夠對烏賊族群生物的知識多一些瞭解。
Natural life history of cephalopods have been puzzling marine biologists for a long time. Fishery scientists also met with great difficulty in managing resources of squids as well as cuttlefishes. The lack of the accurate equation defining growth through time is one of the major reasons. This was due mainly to no stable characteristic for age determinations. It was known that in anatomy, stripe layers of cuttlebone are similar in embryonic development as shells of the bivalve, which has been used for age determinations.
This study suggested that by taking the stripe marks on the bottom surface of the cuttlebone as quasi-daily-aging characters, it is possible to define the trend of growth of cuttlefish by (either a von Bertalanffy or Gompertz) growth equation. A semi-automatic computer processing system was designed and organized to measure the stripe area lengths (SAL) and lengths of stripe margin (LSM) for all stripe marks upon individual cuttlebone (analogous to scale reading in fishery research for the same purpose) of (Sepia pharaonic Ehrenberg,1831). A total of 21 cuttlebones were measured and the data analyzed. It appeared that the growth of the cuttlefishes are still on the stage of acceleration, and is not suitable to be represented by the VBGF curve traditionally used. Using SAL= and LSM= '' as length indicators respectively, two Gompertz growth equations were respectively estimated as followed.
= 30.00*exp[-3.73*exp(-0.012*t)]
'' = 23.18*exp[-4.27*exp(-0.015*t)]
Two functional linear regression formulas were also prepared as:
= -1.2684 + 0.7729 * L
'' = -0.7829 + 0.6297 * L
The above formulas can be used for the transformation between SAL (or LAM) and body length.
The well-known Rosa Lee’s phenomenon was not found either based on the character of SAL or LSM, implying that during the trend of growing, the mortality of Sepia pharaonic were not significantly different among different sizes of organisms.
It was expected that with this breakthrough in technique and theory, additional knowledge on the populations biology of cuttlefish can be known in more detail.
章次 頁數
中文摘要……………………………………………………………….………………..i
英文摘要……………………………………………………………….…………….....ii
目錄………………………………………………………………………………..…...iv
表目錄………………………………………………………………………………......v
圖目錄………………………………………………………………………………….vi
1 前言………………………………………………………..…………………...….…1
2 材料與方法
2-1 實驗材料……..………………………………………………………………...4
2-2 測量方法與系統整合……………………………………….......................…..5
2-3 統計與分析……………………….………………............................................6
3結果
3-1以最大輪紋外緣長及最大輪帶長與極限體長值之換算關係………………..8
3-2 成長方程式分析……………………………………………….……………....8
  3-3a以輪紋外緣長推算成長方程式及成長曲線………………………………..10
3-3b以輪紋帶長推算成長方程式及成長曲線………………….……………….11
3-4 李氏現象……………………………………………………………………...11
3-5季節性變化…………………………………………………………...……….12
4 討論…………………………………………….………………………..……..…...13
5 結論…………………………………………………….……………………..…….16
6 參考文獻………………………………………………………………………..…..17
附錄……………………………………….………......................………………….41




表目錄
表 1. 使用材料烏賊骨片大小記錄。………………………………….……………21
表 2. 實測之骨片輪紋外緣長與其最大輪紋外緣長表。…………….....................22
表 3. 實測之骨片輪紋帶長與其最大輪紋帶長表。……………………………… 23
表 4. 利用輪紋外緣長推算甘培茲成長方程式之參數表。………..……………...24
表 5. 利用輪紋帶長推算甘培茲成長方程式之參數表。..………….……………..25
表6. 骨片上不同輪紋之實測外緣長與其最大值之迴歸關係。…………………..26
表7. 骨片上不同輪紋之實測紋帶長與其最大值之迴歸關係。…………………..27


























圖目錄
圖1.烏賊骨片上的輪紋外緣長與輪帶長及體長測量圖示。……...………………...28
圖2.以骨片清晰完整之輪紋外緣長當第一條逐一往內複製疊合圖。……………..29
圖3.將欲計算之圖層以wblock指令整合成單一圖層圖。….…………………...…30
圖4.以骨片之外緣長、輪帶長為體長指標進行Ford – Walford解析。…………...31
圖5.以平均外緣長及平均紋帶長為體長指標進行Ford –Walford解析。…………..32
圖6.以取對數之骨片外緣長、輪帶長為體長指標進行Ford – Walford解析。…...33
圖7.實測之輪紋外緣長、輪帶長與其體長間迴歸關係圖。……………………….34
圖8.由骨片輪紋外緣長與輪紋數推算成長曲線之各參數分布直方圖。…………35
圖9.由骨片輪紋帶長與輪紋數推算成長曲線之各參數分布直方圖。…………....36
圖10.骨片輪紋外緣長與輪紋數推算之成長曲線圖。…………..………………....37
圖11.骨片輪紋帶長與輪紋數推算之成長曲線圖。…………………………..........38
圖12.以個別輪紋外緣長與其最大值間的關係圖。……………………………......39
圖13.以個別輪紋帶長與其最大值間的關係圖。………..………….……...……....40
方新疇,2003,漁業生物學課堂講義。
王文中,2004,統計學與Excel資料分析之實習應用。博碩文化出版,p310-342。
劉景耀,趙傳絪,1991,海洋漁業生物學。農學出版社,p641-686。
唐逸民,李星頡,1986,曼氏無針烏賊生物學特性及漁場分佈變化。浙江水產學院學報,5 (2)。
黃士宗,郭慶老譯,1989,水產資源學。中國水產月刊,447: 43-75。
葉昌臣,黃斌,1993,漁業生物數學。水產出版社,p50-53。
藍屹生,2001,AutoCAD2002實用指南。�眳p資訊,p3-11--3-25。
鍾文松,2003,溫度、鹽度暨光照週期對於軟絲生活史初期平衡石成長輪生成的效應。中山大學海洋生物所碩士論文,p25-28。
能勢幸雄,石井丈夫,清水誠,1988,水產資源學。東京大學出版會。
Aoyama, T. and T. Nguyen. 1989. Stock assessment of cuttlefish off the coast of People’s Democratic Republic of Yemen. Journal of Shimonoseki University of Fisheries 37: 61-112.
Bettencourt, V. and A. Guerra. 2001. Age studies based on daily growth increments in statoliths and growth lamellae in cuttlebone of cultured Sepia officinallis. Marine Biology 139: 327-334.
Beamish, R. J. and G. A. Mcfarlane. 1983 . The forgotten requirement for age validation in fisheries biology. Transactions of the American Fisheries Society 112: 735- 743.
Bizikov, V. A. 1991. A new method of squid age determination using the gladius. In:Jereb P, Ragonese S, Boletzky Sv(eds) Squid age determination using stato-
liths. Proceedings of an international workshop. NTR-ITPP spec publ 1, Note Tecniniche e Reprints dell’ Instituto di Tecnologia della Pesca e del Pescatto, Mazara del Vall, pp39-51.
Clarke, M.R. 1965. Growth rings in the beaks of the squid Moroteuthis ingens (Oegopsida: Onychoteuthidae). Malacologia 3: 287-307.
Dunning, M. C. 1998. Family Sepiidae, cuttlefishes. Pp.723-763. In Reid, A. L. (Eds.) FAO Species-Identification guides for fishery purposes: The living marine resources of the western central Pacific. Vol. 2. Cephalopods, Crustaceans, Holothurians and Sharks. Rome, FAO Pp.687-1396.
Forsythe, J. W., R. H. DeRusha and R. T. Hanlon. 1994. Growth, reproduction and life span of Sepia officinalis (Cephalopada: Mollusca) cultured through seven consecutive generations. Journal of Zoology 233: 175- 192 .
Forsythe, J. W., L. S. Walsh, P. E. Turk and P. G. Lee. 2001. Impact of temperature on juvenile growth and age at first egg-laying of the Pacific reef squid Sepioteuthis lessoniana reared in captivity. Marine Biology 138:103-112.
Fournier, D. A., J. R. Sibert, J. Majkowski & J. Hampton. 1990. MULTIFAN: a likelihood-based method for estimating growth parameters and age composition from multiple length frequency data sets illustrated using data for sourthern bluefin tuna (Thunnus maccovii). Canadian Journal of Fisheries and Aquatic Science 47: 301-317.
Gabr, H. R., R. T. Hanlon, M. H. Hanafy and S. G. El-Etreby. 1998. Maturation, fecundity and seasonality of reproduction of two commercially valuable cuttle-
fish, Sepia pharaonis and S. dollfusi, in the Suez Canal. Fisheries Research 36:99-115.
Guy Pinczon du Sel, A. Blanc and J. Daquzan. 2000. The diet of the cuttlefish Sepia officinalis L. (mollusca:cephalopada )during its life cycle in the Northern Bay of Biscay ( France). Aquatic Sciences 61: 167-178.
King, M. G. 1995. Fisheries biology assessment and management. Fishing News Books p117-135.
King, M. G. 1986. A program for fitting an oscillating growth curve to length-age data when growth is seasonal. Fisheries Software Register, 3, CSIRO, Hobart, Australia.
LaRoe, E. T. 1971. The culture and maintenance of the loliginid squids Sepioteuthis sepioidea and Doryteuthis plei. Marine Biology 9: 9-25.
Laurence, C., J. Royer, and J. P. Robin. 2002. Variability in age-at-recruitment and early growth in English Channel Sepia officinalis described with statolith analy- sis. Aquaculture Living Resource 15: 303-311.
Lin, J. and W. Su. 1994. Early phase of fish habitation around a new artificial reef off southwestern Taiwan. Bulletin of Marine Science 55: 1112-1121.
Minton , J. W., L. S. Walsh, P. G. Lee, and J. W. Forsythe. 2002. First multi- generation culture of the tropical cuttlefish Sepia pharaonis Ehrenberg, 1831. Aquaculture International 9: 379-392.
Nabhitabhata, J. and P. Nilaphat, 1999. Life cycle of cultured Pharaoh cuttlefish, Sepia pharaonis Ehrenberg, 1831. Phuket Marine Biological Center Special Publication 19:25-29.
Norman, M. and A. Reid, 2000. Pharaoh’s cuttlefish, Sepia pharaonis .A Guide to squid, Cuttlefish, and Octopuses of Australasia. CSIRO Publishing: Colling- wood, Victoria, pp. 29.
O''Dor, R. K. and D. M. Webber. 1991. The constraints on cephalopods: why squid aren’t fish. Canadian Journal of Zoology 64: 1591-1605.
Perez, J. A., R. K O’Dor, P. Beck, and E .G. Dawe. 1996. Evaluation of gladius dorsal surface structure for age and growth studies of the short-finned squid, Illex illecebrosus (Teuthoidea: Ommas-trephidae). Can Journal of Fisheries Aquatic Sciences 53: 2837-2846.
Pedro, R`e and L. Narciso. 1994. Growth and cuttlebone microstructure of juvenile cuttlefish, Sepia officinalis L., under controlled conditions. Journal of Experi- mental Marine Biology and Ecology 177: 73-78.
Pauly, D., N. David & J. Ingles. 1980. ELEFAN 1: User’s instructions and program listing. International Centre for Living Aquatic Resources Management (ICLARM) , Manila, Philippines.
Raya, C. P., C. L. Hernández-Gonsález. 1998. Growth lines within the beak micro- structure of the octopus Octopus vulgaris Cuvier, 1797. In: Payne AI, Lipinski L, Clarke MR, Roeleveld MAC (eds) Cephalopod biodiversity, ecology and evology and evolution. Southern Africa Journal of Marine Science 20:135-142.
Ricker, W. E. 1975. Computation and interpretation of biological statistics of fish populations. Bulletin of the Fisheries Research Board of Canada No. 191. Ottawa. Ontario.
Riffenburgh, R. H. 1960. A new method for estimating parameters for the Gompertz growth curve. J. Cons. Int. Explor. Mer. 25: p285-293.
Ricklefs, R. E. 1967.A graphical method of fitting equations to growth curves. Ecology, vol. 48, No 6.
Summerfelt, R. C. and G. E. Hall. 1987. The age and growth of fish. Iowa State University press p45-111.
Spratt, J. D. 1978. Age and growth of the market squid, Loligo opalescens Berry, in Monterey Bay. Fisheries Bulletin.169: 35-44.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top