跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/29 07:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林季儒
研究生(外文):Chi-Ju Lin
論文名稱:南海北部之鐳-226及鉛-210/鐳-226活度比
論文名稱(外文):Ra-226 and Pb-210/Ra-226 Activity Ratio in the Northern South China Sea
指導教授:鍾玉嘉
指導教授(外文):Yu-Chia Chung
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋地質及化學研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:66
中文關鍵詞:鐳-226鉛-210/鐳-226 活度比南海滯留時間
外文關鍵詞:Pb-210/Ra-226 activity ratioRa-226SCSresidence time
相關次數:
  • 被引用被引用:2
  • 點閱點閱:264
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:1
本研究主要目的為探討南海北部鐳-226在表水及剖面的分佈及其意義,並藉由鉛-210與鐳-226子母核種活度不平衡,推算鉛-210在水體的滯留時間。分別利用海研一號575航次(2000年3月)、606航次(2001年4月)、662航次(2002年10月)與688航次(2003年7月),進行採樣。
本研究區之表水鐳-226活度約為10~16 dpm/100kg,最高值靠近中國大陸沿岸地區,且其分佈有季節性變化:在夏季,低鐳-226的西菲律賓海表水進入南海,但以朝北流為主;在秋季則流向南海中心。季節性的改變,可能是受到季風和西菲律賓海水入侵強度的影響。本區鐳-226之剖面分佈與大洋相似,大致上從表水隨深度而增加,但大約在水深1500公尺以上,其活度高於西北太平洋,可能是由廣大之大陸棚和大陸坡的沉積物所供應。在此深度以下,雖然有小部份剖面值偏高,但是平均剖面的活度值與西北太平洋剖面值相似。據此推論,南海深層水鐳-226的來源,應與大洋相似,即由海底沉積物向上擴散而來。
本區之表水鉛-210/鐳-226活度比約為1.4~2.7,高值發生在呂宋海峽,因其鐳-226的活度較低。在表水,鉛-210相對於鐳-226呈超量,因有大氣的輸入,此超量鉛-210可向下穿透至200~500公尺。在此深度以下,鉛-210則呈不足現象,因為鉛-210在水體中會被沉降顆粒所清除。在1000公尺以下鉛-210/鐳-226活度比在0.5~0.7之間。假定混合層的厚度為50公尺,大氣鉛-210的輸入量為1.05 dpm/cm2/y,則利用盒子模式可計算得鉛-210在混合層的平均滯留時間約為1年。在深水層,其活度比約為0.5~0.7,據此計算得鉛-210在深水的滯留時間約30~70年,與太平洋深水相近,顯示南海深層水與大洋深層水之鉛-210受顆粒清除的速率相近。
The purposes of this study are to understand the surface water distributions and vertical profiles of Ra-226 in the northern South China Sea (SCS), and to estimate the mean residence time of Pb-210 based on the extent of radioactive disequilibrium relative to Ra-226. Seawater samples of 20-liter size were collected during four Ocean Researcher I (ORI) cruises conducted in 2000, 2001, 2002 and 2003 (Cruise 575 in March, Cruise 606 in April, Cruise 662 in October, and Cruise 688 in July) for Ra-226 measurements.
Surface water Ra-226 in the study area varies between 10 and 16 dpm/100 kg with higher values at stations closer to the landmass of coastal China. The surface water Ra-226 distribution shows seasonal variation: the western Philippine Sea (WPS) surface water with low Ra-226 content enters the SCS and moves mainly northwestward in summer; this water shifts toward the center in autumn. Ra-226 profiles in the northern SCS generally show an increase from the surface toward the bottom, quite similar to that of the open ocean. However, Ra-226 is systematically higher in the northern SCS than in the western North Pacific above 1500m. This may be attributed to higher Ra-226 input from the vast area of the shelf and slope in the SCS. Below this depth, Ra-226 displays large variation in some of the profiles but the mean values are quite comparable to those of the western North Pacific at the corresponding depth. The deep water in the SCS basin probably derives its Ra from the underlying sediments similar to the case in open oceans.
The Pb-210/Ra-226 activity ratio in the study area ranges between 1.4 and 2.7 in the surface water with higher values at the stations closer to the Luzon Strait due to lower Ra-226 over there. The excess Pb-210 over Ra-226 in the surface water due to atmospheric input may penetrate to a depth of about 200 to 500m. Below this depth, Pb-210 becomes deficient because it is scavenged and removed by settling particulates. Below 1000m, the Pb-210/Ra-226 activity ratio varies around 0.7 to 0.5. Box model calculations within a mixed layer of 50m in the area yield a mean residence time of about 1 yr for Pb-210 if an atmospheric Pb-210 flux of 1.05 dpm/cm2/y is adopted. The activity ratio of about 0.5 to 0.7 in the deep water corresponds to a Pb-210 mean residence time of about 30 to 70 yrs with respect to particulate scavenging. These values are quite comparable to those determined from the Pacific deep water, suggesting that Pb-210 in the SCS deep water is scavenged and removed by sinking particulates at a rate similar to that in the deep open oceans.
中文摘要 ……………………………………………………………... I
英文摘要 …………………………………………………………… III
目錄 …………………………………………………………………. V
圖目錄 …………………………………………………………...… VII
表目錄 ………………………………………………………….… VIII

一、 緒論 ………………………..………………………………….. 1
1.1前言 ……………………………………………………..……... 1
1.2鐳-226之來源及應用 ..…………………………………..……. 1
1.2.1鐳-226之來源 ……………………………….…………….. 1
1.2.2鐳-226及其子核種之應用 ………………………………... 2
1.3研究區域概況 …………………………………………………. 3

二、 實驗方法 ……………………………………………………… 7
2.1採樣 ……………………………………………………………. 7
2.2前處理及鐳-226測量 ……………………………………….… 7
2.3閃爍腔的偵測效率 …………………………..………………. 10
2.4鐳-226活度計算 ……………………………………………... 11
2.5誤差值之計算 ………………………………………………... 12

三、 結果與討論 …………………………………………………... 14
3.1各航次水文特徵 …………………………………………...… 14
3.1.1 2000年3月與2001年4月水文描述 …………………..... 14
3.1.2 2002年10月水文描述 ………………….………….…… 16
3.1.3 2003年7月水文描述 …………………….…..…………. 23
3.2鐳-226表水分佈 …………………………………….……….. 26
3.3鐳-226剖面分佈 ……………...……………………………… 37
3.4鉛-210與鐳-226活性不平衡現象及鉛-210滯留時間 …….. 45
3.4.1鉛-210與鐳-226活性不平衡現象 ………………………. 45
3.4.2鉛-210滯留時間 ………………………...……………….. 47

四、 結論 ………………………………………………..………….. 50

參考文獻 …………………………………………………………… 51

附錄1 鐳-226剖面分佈 ..…………………………………………. 57
附錄2 各航次C、D與F站在深層水之全量鉛-210滯留時間 …. 64


圖目錄
頁碼
圖1-1 南海地理位置及海底地形圖 ……………………………….. 4
圖2-1 研究區域各測站位置圖 ………………………………..…… 8
圖3-1 研究區域水文測站位置圖 ………………………………… 15
圖3-2 ORI-575各深水測站之溫鹽圖 ……………...……………… 17
圖3-3 ORI-606各深水測站之溫鹽圖 …………….………………. 18
圖3-4 ORI-575航次各深水測站之CTD位溫與鹽度剖面圖 …..… 19
圖3-5 ORI-606航次各深水測站之CTD位溫與鹽度剖面圖 …..… 20
圖3-6 ORI-662各深水測站之溫鹽圖 …………….………………. 21
圖3-7 ORI-662航次各深水測站之CTD位溫與鹽度剖面圖 …..… 22
圖3-8 ORI-688各深水測站之溫鹽圖 …………….………………. 24
圖3-9 ORI-688航次各深水測站之CTD位溫與鹽度剖面圖 …… 25
圖3-10 ORI-662航次(2002年10月)表水鐳-226活度分佈圖 ….. 28
圖3-11 ORI-688航次(2003年7月)表水鐳-226活度分佈圖 …... 29
圖3-12 ORI-662航次(2002年10月)和ORI-688航次(2003年7月)測站H CTD溫度與鹽度剖面圖 ………….….…………. 30
圖3-13 分別在(a)夏季與(b)秋季時,測得水深50公尺之溫度與速度圖 ……………………………………………………..….. 36
圖3-14 ORI-606、ORI-662與ORI-688航次測站C之鐳-226剖面圖 38
圖3-15 ORI-575、ORI-662與ORI-688航次測站D之鐳-226剖面圖 39
圖3-16 ORI-575、ORI-662與ORI-688航次測站F之鐳-226剖面圖 41
圖3-17 ORI-662與ORI-688航次測站J之鐳-226剖面圖 ……… 42
圖3-18 2002年10月與2003年7月各測站鐳-226剖面分佈圖 .…. 44
圖3-19 測站C、D與F鉛-210/鐳-226活度比垂直分佈圖 ……….. 46

表目錄
頁碼
表2-1 鐳-226採樣航次、日期、測站、經緯度與底深 …………… 9
表3-1 表水鐳-226活度 ……………………………...……………. 27
表3-2 表水鐳-228活度 ………………………………..………….. 34
表3-3 ORI-662和ORI-688兩航次表水擴散係數 ……………….. 34
表3-4 ORI-662和ORI-688鐳-226實測值與估計值之比較 ……… 35
表3-5 各測站全量鉛-210在混合層的平均滯留時間 ………...…. 48
中文部分
中國科學院南海海洋研究所,1985,南海海區綜合調查研究報告,科學出版社,432 pp。
王樹倫,1997,西北太平洋邊緣海二氧化碳之研究,國立中山大學海洋地質及化學研究所博士論文,226 pp。
尹宏洲,1993,台灣東部及東北部黑潮海域鐳-226分佈之研究,國立中山大學海洋地質研究所碩士論文,67 pp。
周謀武,1988,地下水氡濃度精密度量方法之設計、設置與校正及其應用,國立中山大學海洋地質研究所碩士論文,63 pp。
吳佑民,1995,臺灣東北海域鐳-226、鉛-210及釙-210之活性不平衡狀態,國立中山大學海洋地質及化學研究所碩士論文,50 pp。
吳宗恩,2002,南海北部海域水體中Pb-210與Po-210活性不平衡狀態,國立中山大學海洋地質及化學研究所碩士論文,62 pp。
孫湘平,1995,中國的海洋,商務印書館,209 pp。
黃奕普、姜德盛、徐茂泉、陳敏及邱雨生,1997,南海東北部表水層水平渦動擴散的228Ra示蹤研究,熱帶海洋,16,2,67-73。
陳建熙,1989,新竹地區氡研究–方法與結果,國立中山大學海洋地質研究所碩士論文,61 pp。
陳平,1996,台灣海域及高雄地區大氣懸浮微粒之粒徑分析與鉛-210活性分佈,國立中山大學海洋地質及化學研究所碩士論文,70 pp。
陳鎮東,2001,南海海洋學,部編大學用書,國立編譯館主編,渤海堂文化公司印行,506 pp。
張碩峰,2001,鐳-226在東海及台灣東北海域分佈之研究,國立中山大學海洋地質及化學研究所碩士論文,34 pp。
國家海洋科學研究中心海洋資料庫,1999。
游豐兆,2003,以加馬能譜法分析鐳同位素在台灣周圍海域及南海北部之分布,國立中山大學海洋地質及化學研究所碩士論文,72 pp。
葉智祺,1996,臺灣東北與西南海域鐳-228及鐳-226之分佈,國立中山大學海洋地質研究所碩士論文,75 pp。
鄭天爵,1991,空氣中氡活性之連續偵測及其與氣象因素之探討,國立中山大學海洋地質研究所碩士論文,69 pp。

英文部分
Balkanski, Y.J., D.J. Jacob, G.M. Gardner, W.C. Graustein, K.K. Turekian, 1993, Transport and residence time of tropospheric aerosols inferred from a global three-dimensional simulation of 210Pb, J. Geophys. Res., 98, 20573-20586.
Broecker, W.S., Y.H. Li and J. Cromwell, 1967, Radium 226 and radon 222: Concentration in Atlantic and Pacific Oceans, Science, 158, 1307-1310.
Broecker, W.S., J. Goddard and J.L. Sarmiento, 1976, The distribution of Ra-226 in the Atlantic Ocean, Earth Planet. Sci. Lett., 32, 220-235.
Burton, W.M. and N.G.. Stewart, 1960, Use of long-lived natural radioactivity as an atmospheric tracer, Nature, 186, 584-589.
Chen, C.T.A. and M.H. Huang, 1996, A mid-depth front separating the South China Sea water and the West Philippine Sea water, J. Oceanogr., 52, 17-25.
Chung, Y., 1971, Pacific deep and bottom water studies based on temperature, radium and excess-radon measurement, Ph.D. thesis, University of California, San Diego, 139 pp.
Chung, Y., 1980, Radium-barium-silica correlations and a two-dimensional radium model for the world ocean, Earth Planet. Sci. Lett., 49, 309-318.
Chung, Y. and H. Craig, 1972, Excess-radon and temperature profile from the eastern equatorial Pacific, Earth Planet. Sci. Lett., 14, 55-64.
Chung, Y. and H. Craig, 1973, Radium-226 in the eastern equatorial Pacific, Earth Planet. Sci. Lett., 17, 295- 306.
Chung, Y. and H. Craig, 1980, 226Ra in the Pacific Ocean, Earth Planet. Sci. Lett., 49, 267-292.
Chung, Y., and H. Craig, 1983, Pb-210 in the Pacific: the GEOSECS measurements of particulate and dissolved concentrations, Earth Planet. Sci. Lett., 65, 406-432.
Chung, Y. and H.C. Yin, 1995, Radium-226 in the Kurosio Water Near Taiwan: Results From the KEEP and KEEP-MASS Programsm, TAO, 6, 47-63.
Craig, H., S. Krishnaswami and B.L.K. Somayajulu, 1973, Pb-210/Ra-226: radioactive disequilibrium in the deep sea, Earth and Planet. Sci. Lett., 17, 295-305.
Dale, W.L., 1965, Wind and drift current in the South China Sea, The Malayan Journal of Tropical Geography, 8, 1-31
Kaufman, A., R.M. Trier and W.S. Broecker, 1973, Distribution of 228Ra in the world ocean, J. Geophys. Res., 78, 8827-8848.
Koczy, F.F.,1958, Natural radium as a tracer in the ocean, Proc. Second U. S. Int. Peaceful Uses of Atomic Energy, 18, 351-357.
Ku, T.L., Y.H. Li, G.G. Mathieu and H.K. Wong, 1970, Radium in the Indian– Antarctic Ocean south of Australia, J. Geophys. Res., 75, 5286-5292.
Ku, T.L., C.A. Huh and P.S. Chen, 1980, Meridional distribution of Ra-226 in the eastern Pacific along GEOSECS cruise tracks, Earth Planet. Sci. Lett., 49, 293-308.
Liu, C.T. and R.J. Liu, 1988, The deep current in the Bashi Channel, Acta Oceanogr. Taiwanica, 20, 107-116.
Moore, W.S., 1969, Measurement of 228Ra and 228Th in sea water, J. Geophys. Res., 74, 694-704.
Moore, W.S. and W.M. Sackett, 1964, Uranium and thorium series inequilibrium in seawater, J. Geophys. Res., 69, 5401-5405.
Munk, W.H., 1966, Abyssal recipes, Deep-Sea Res., 13, 707-730.
Nitani, H., 1972, Beginning of the Kuroshio, in Kuroshio, edited by H. Stommel and K. Yoshida, University of Tokyo Press, 353-369.
Nozaki, Y. and S. Tsunogai, 1976, 226Ra, 210Pb and 210Po disequilibria in the western North Pacific, Earth Planet. Sci. Lett., 32, 297-303.
Poet, S.E., H.E. Moore and E.A. Martell, 1972, Lead-210, Bismuth and Polonium-210 in the atmosphere: accurate ratio measurement and application to aerosol residence time determination, J. Geophys. Res., 77, 6515-6527.
Rama, M.K., and E.D. Goldberg, 1961, Lead-210 in natural water, Science, 134, 98-99.
Watts, J.C.D., 1971, A general review of the oceanography of the northern sector of the South China Sea, Hong Kong Fisheries Bulletin, 2, 41-50.
Watts, J.C.D., 1973, Hydrography of the continental shelf area off Hong Kong II: Observations for the year 1970, Hong Kong Fisheries Bulletin, 3, 37-46.
Williamson, G..R., 1970, Hydrography and weather of the Hong Kong fishing ground, Hong Kong Fisheries Bulletin, 1, 43-49.
Wu, C.R., P.T. Shaw and S.Y. Chao, 1998, Seasonal and interannual variations in the velocity field of the South China Sea, J. Oceanogr., 54, 361-372.
Wyrtki, K., 1961, Physical oceanography of the Southeast Asian water, NAGA Report, 2, Scripps Institution of Oceanography, La Jolla, California, 195 pp.
Xue, H., F. Chai, N. Pettigrew and D. Xu, 2004, Kuroshio intrusion and the circulation in the South China Sea, J. Geophys. Res., 109, C02017, 1-14.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top