跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.69) 您好!臺灣時間:2021/07/29 14:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪嘉穗
研究生(外文):Chia-Sui Hung
論文名稱:大鵬灣及七股潟湖汞與營養鹽之生地化學研究
論文名稱(外文):Biogeochemistry of Mercury and Nutrients in the Tapong Bay and the Chiku Lagoon
指導教授:洪佳章洪佳章引用關係
指導教授(外文):Jia-Jang Hung
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋地質及化學研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:141
中文關鍵詞:大鵬灣生地化學潟湖
外文關鍵詞:Tapong Baymerurybiogeochemistrylagoon
相關次數:
  • 被引用被引用:18
  • 點閱點閱:286
  • 評分評分:
  • 下載下載:76
  • 收藏至我的研究室書目清單書目收藏:0
大鵬灣與七股潟湖是台灣西部兩大主要潟湖,是研究近岸環境改變對生態系統影響之理想場所,因此本研究主要目的在評估大鵬灣蚵架拆除前後的環境改變對碳、營養鹽及汞生地化作用之影響,以及大鵬灣與七股潟湖中汞物種及微量金屬之控制機制及污染程度。
大鵬灣蚵架拆除前水體滯留時間約為10天,蚵架拆除後約為7.1天,顯示出潟湖水體之交換以蚵架拆除後比拆前較佳。而營養鹽濃度的變化大致為蚵架拆後比拆除前低,因蚵架拆除後海水交換量變大使得營養鹽濃度變小及潟湖內缺乏牡蠣攝食與箱網養殖所致。大鵬灣蚵架拆除後∆POC/∆PN年平均比值8.1,比蚵架拆除前∆POC/∆PN年平均比值7.3略高,似顯示蚵架拆除後陸源或碎屑有機碳影響增大。利用生地化模式推演大鵬灣內物質之收支平衡,顯示大鵬灣蚵架拆除後全年平均淨有機碳生成量約為拆除前2倍,表示蚵架拆除後,大鵬灣仍為一自營性系統。而由大鵬灣之淨固氮能力(nfix-denit)可知,蚵架拆除前後皆為固氮作用較脫氮作用顯著,顯示出潟湖內以固氮藻類為主;而蚵架拆除後,在夏季時以由固氮藍藻轉為矽藻,則表示大鵬灣的整治對水質條件已有所改善。
由於汞具有相當高生物毒性且對水體生態之影響極為顯著,而台灣鄰近海域中汞分佈資料相當缺乏,因此本研究亦在於建立近岸水體中汞物種的測定方法並應用於大鵬灣及七股潟湖汞生地化作用的研究。大鵬灣中汞物種分佈分別為總汞濃度(unfilt.):6.66-12.40 ng/l,平均10.01 ng/l;總溶解態汞濃度(filt.):1.79-3.75 ng/l,平均2.56 ng/l;反應性汞濃度:1.59-2.67 ng/l,平均1.90 ng/l;顆粒態汞濃度:2.51-9.45 ng/l,平均5.60 ng/l。七股潟湖汞物種分佈分別為總汞濃度(unfilt.):4.47-9.20 ng/l,平均6.22 ng/l;總溶解態汞濃度(filt.):2.03-5.69 ng/l,平均4.54 ng/l;反應性汞濃度:1.70-2.87 ng/l,平均2.12 ng/l;顆粒態汞濃度:2.50-7.65 ng/l,平均4.70 ng/l。由大鵬灣及七股潟湖之顆粒態汞濃度與葉綠素a呈現正相關,而總溶解態汞及反應性汞與葉綠素a呈現負相關,顯然各汞物種分佈主要受生物吸收作用所控制。反應性汞(Hg2+)與溶氧濃度呈現顯著正相關,表示生物氧化還原作用影響Hg2+之分佈。顆粒態汞濃度與懸浮顆粒物質及有機顆粒碳濃度有顯著正相關,主要的原因是生物吸收及顆粒吸收作用所致。
由於大鵬灣及七股潟湖均有廢水注入之污染源,因此以各微量金屬之富集因子來評估人為污染的程度,由結果顯示出大鵬灣各微量金屬之富集因子超過了七股潟湖,其中以汞的污染及生物富集作用大鵬灣更是遠超過七股潟湖,表示大鵬灣所受到的人為污染影響比七股潟湖來的大。而大鵬灣及七股潟湖之顆粒態汞與顆粒態鐵、錳及鋁並無顯著相關,顯示汞主要是與有機質結合,並非受到地殼風化或是陸源所帶來的顆粒物質所決定。
Abstract
The Tapong Bay and the Chiku Lagoon are major lagoons in the south of Taiwan and are ideal sites to study the influence of coastal environment change on the ecosystem. Therefore, this study aims to evaluate the influence of oyster culture racks removal on biochemical processes of carbon, nutrients and mercury in the Tapong Bay, as well as to compare the status of mercury and trace-metal pollution in Tapong Bay and Chiku Lagoon.
Before the removal of the oyster culture racks from the Tapong Bay, the annual mean of water exchange time is about 10 days that is longer than that of the present condition (7.1 days). This suggests that the flushing condition of lagoon water is improved after the racks were removed. The annual mean of each nutrient concentration is also lower at present than before, probably due to the enhanced water exchange rate and biological utilization. The annual mean of ∆POC/∆PN is 8.1 that is larger than that of the previous condition (7.3), possibly resulting from the increase of inputs of organic detritus. The Tapong Bay is an autotrophic system (p-r>0) both before and after the removal of oyster culture racks. However, the net ecosystem production (p-r) at present is twice as large as before the removal of oyster racks. After the removal of racks, the annual nitrogen fixation still exceeds the annual denitrification in the Tapong Bay with a magnitude of 5.35 mole N m-2 yr-1.
Mercury (Hg) is a highly toxic metal with high affinity to biota. As the lack of Hg distribution data around the coastal zone of Taiwan, the study also aims to develop the analytical methods of Hg species and apply to study Hg biogeochemistry in Tapong Bay and Chiku Lagoon. Distributions of Hg species in the Tapong Bay are spatio-temporally variable, ranging from 6.66 to 12.40 ng/l (ave., 10.01 ng/l) for total Hg (unfilt.), from 1.79 to 3.75 ng/l (ave., 2.56 ng/l) for total dissolved Hg (filt.), from 1.59 to 2.67 ng/l (ave., 1.90 ng/l) for reactive Hg and from 2.51 to 9.45 ng/l (ave., 5.60 ng/l) for particulate Hg. Distributions of Hg species in the Chiku Lagoon are also spatio-temporally variable, ranging from 4.47 to 9.20 ng/l (ave., 6.22 ng/l) for total Hg (unfilt.), from 2.03 to 5.69 ng/l (ave., 4.54 ng/l) for total dissolved Hg (filt.), from 1.70 to 2.87 ng/l (ave., 2.12 ng/l) for reactive Hg and from 2.50 to 7.65 ng/l (ave., 4.79 ng/l) for particulate Hg. The abundance of particulate Hg is positively correlated with chlorophyll a, and total dissolved Hg and reactive Hg are negatively correlated with chlorophyll a. Such relationships imply that distributions of Hg species are primarily controlled by biological uptake and/or adsorption/desorption. Reactive Hg (Hg2+) is also correlated positively with dissolved oxygen concentration suggesting the biological redox effect in modulating the distribution of Hg2+. Particulate Hg also shows positive relationships with total suspended matter and particulate organic carbon, primarily due to biological absorption and particle adsorption/desorption.
Enrichment factor (EF) are employed to evaluate trace metal pollution in Tapong Bay and Chiku Lagoon. The results show that the magnitudes of EF are larger in Tapong Bay than in Chiku Lagoon for most metals, particularly for Hg, indicating an thropogenic influence on metal distributions in both lagoons. On the other hand, particulate Hg is poorly correlated with particulate Fe, Mn and Al, strongly indicating relatively little influence of terrestrial detritus in modulating the distributions of particulate Hg.
目 錄
致謝……………………………………………………………………Ⅰ
中文摘要………………………………………………………………Ⅱ
英文摘要………………………………………………………………Ⅲ
目錄……………………………………………………………………Ⅳ
圖目錄…………………………………………………………………Ⅴ
表目錄…………………………………………………………………Ⅵ

第一章 前言…………………………………………………………..1
第二章 研究區域
2.1 大鵬灣……………………………………………………….6
2.2 七股潟湖…………………………………………………….8
第三章 材料及方法
3.1 採樣位置及方法…………………………………………….11
3.2 樣品分析…………………………………………………….13
3.3 大鵬灣及七股潟湖內水體滯留時間及物質之進出通量….27
第四章 結果與討論
4.1 大鵬灣基本水文資料之分佈及季節性變化……………….34
4.2 大鵬灣水體之滯留時間及海水交換量…………………….40
4.3 大鵬灣營養鹽及溶解態有機碳、氮及磷之分佈及季節性
變化…………………………………………………………42
4.4 大鵬灣氮及磷之輸出入通量及有機碳生成量…………….54
4.5 自然水體中之汞…………………………………………….59
4.6 大鵬灣及七股潟湖各汞物種濃度之分佈及季節性變化….63
4.7 大鵬灣及七股潟湖各汞物種與化學參數之相關性……….70
4.8 大鵬灣及七股潟湖各汞物種濃度之比較………………….90
4.9 大鵬灣及七股潟湖微量金屬之地化特徵與污染現況…….93
第五章 結論…………………………………………………………..105

參考文獻
中文部分…………………………………………………………108
英文部分………………………………………………………....109
附錄
附錄一 大鵬灣表底水鹽度之空間分佈圖…………………....113
附錄二 大鵬灣表底水pH值之空間分佈圖………………….115
附錄三 大鵬灣表底水溶氧濃度之空間分佈圖………………117
附錄四 大鵬灣表底水營養鹽之空間分佈圖…………………119
附錄五 大鵬灣表底水溶解有機碳、氮及磷之空間分佈圖…125
附錄六 大鵬灣表底水汞物種濃度之空間分佈圖……………130
附錄七 七股潟湖表水汞物種濃度之空間分佈圖……………136
圖目錄
圖1-1 汞之簡易循環圖………………………………………………4
圖2-1 大鵬灣採樣位置圖……………………………………………7
圖2-2 七股潟湖採樣位置圖…………………………………………9
圖3-1 樣品處理流程圖………………………………………………14
圖3-2 濃縮裝置圖……………………………………………………20
圖3-3 潟湖水之進出通量示意圖……………………………………27
圖4-1 大鵬灣降雨量(Precipitation)及蒸發量(Evaporation)
之季節變化……………………………………………………35
圖4-2 大鵬灣夏季表水及底水之鹽度分佈圖………………………36
圖4-3 大鵬灣夏季表水及底水之pH值分佈圖…………………….37
圖4-4 大鵬灣夏季表水及底水之溶氧濃度及溶氧飽和度(%)
分佈圖…………………………………………………………38
圖4-5 大鵬灣基本水文參數平均(鹽度、pH、溫度及溶氧)
之時間序列變化………………………………………………39
圖4-6 大鵬灣夏季營養鹽表底水濃度之空間分佈圖………………43
圖4-7 大鵬灣表底水營養鹽濃度之時序變化………………………44
圖4-8 大鵬灣葉綠素a濃度之時序變化……………………………45
圖4-9 大鵬灣夏季表底水溶解態有機物濃度之空間分佈圖………47
圖4-10 大鵬灣表底水溶解態有機物濃度之時序變化……………..48
圖4-11 大鵬灣採樣時期(a)葉綠素a、溶氧及溫度之時序變化比較(b)葉綠素a、DIN及DIP之時序變化比較……………...51
圖4-12 大鵬灣夏季表底水之汞物種濃度分佈圖…………………..64
圖4-13 七股潟湖夏季表水之汞物種濃度分佈圖…………………..65
圖4-14 大鵬灣表底水汞物種濃度之時序變化……………………..68
圖4-15 七股潟湖表水汞物種濃度之時序變化……………………..69
圖4-16、續圖4-16 大鵬灣表底水各汞物種與葉綠素a之關係圖..71
圖4-17、續圖4-17 七股潟湖表水各汞物種與葉綠素a之關係圖..73
圖4-18、續圖4-18 大鵬灣表底水各汞物種與總懸浮顆粒物質(TSM)
濃度之關係圖………………………………………………..76
圖4-19、續圖4-19 七股潟湖表水各汞物種與總懸浮顆粒物質(TSM)濃度之關係圖………………………………………………..78
圖4-20 大鵬灣汞分配係數與TSM之相關圖…………....................80
續圖4-20 七股潟湖汞分配係數與TSM之相關圖…………………80
圖4-21 大鵬灣POC與TSM之相關圖……………………………..81
續圖4-21 七股潟湖POC與TSM之相關圖………………………..81

圖4-22、續圖4-22 大鵬灣表底水各汞物種與溶解態、顆粒態有
機碳濃度(DOC、POC)之關係…...………………………..83
圖4-23、續圖4-23 七股潟湖表水各汞物種與溶解態、顆粒態有
機碳濃度(DOC、POC)之關係…………………………..85
圖4-24 汞循環及型態轉化示意圖……………………………………87
圖4-25 大鵬灣表底水反應性汞(Reactive Hg)濃度與溶氧(DO)
濃度之關係……………………………………………………88
圖4-26 七股潟湖表水反應性汞(Reactive Hg)濃度與溶氧(DO)
濃度之關係……………………………………………………89
圖4-27 大鵬灣及七股潟湖之汞物種濃度季節性比較………………92
圖4-28 影響大鵬灣及七股潟湖汞物種濃度分佈及趨勢之參數……92
圖4-29、續圖4-29大鵬灣各微量金屬元素富集程度之時空分佈圖..96
圖4-30 大鵬灣表水各微量金屬分配係數平均之空間分佈圖………99
續圖4-30 大鵬灣底水各微量金屬分配係數平均之空間分佈圖…..100
圖4-31 七股潟湖各微量金屬分配係數平均之空間分佈圖………..101
圖4-32 大鵬灣表底水顆粒態汞與顆粒態鐵、錳及鋁相關之季節
分佈圖………………………………………………………..103
圖4-33 七股潟湖表水顆粒態汞與顆粒態鐵、錳及鋁相關之季節
分佈圖……………………………………………………….104

表目錄
表1-1 汞在不同環境下之含量……………………………………….4
表3-1 微波消化條件…………………………………………………16
表3-2 沉積物標準品之精確度及準確度測試………………………17
表4-1 大鵬灣之淡水注入量、海水交換量及滯留時間……………41
表4-2 大鵬灣蚵架拆除前後營養鹽及溶解態有機碳、氮、磷
濃度比較………………………………………………………49
表4-3 大鵬灣蚵架拆除前後各物質之Redfield ratio比較…………52
表4-4 大鵬灣溶解態氮、磷之輸出及輸入季節變化量……………55
表4-5 大鵬灣之非保守性物質季節變化通量(∆Y)…………………57
表4-6 自然水體中一般汞主要分析之物種…………………………60
表4-7 大洋及近岸海域中汞含量的分佈……………………………61
續表4-7 沿海及河口區中汞含量之分佈……………………………62
表4-8 大鵬灣內灣及外灣之汞物種濃度……………………………67
表4-9 大鵬灣及七股潟湖之汞物種濃度比較……..………………..91
表4-10 大鵬灣及七股潟湖溶解態及顆粒態微量金屬濃度範圍
及其平均……………………………………………………..95
表4-11 大鵬灣及七股潟湖微量金屬富集程度的比較……………..98
中文部分:

大鵬灣風景特定區水質改善研究及規劃 期中報告,1999。共426頁。
王騰崇,2001。大鵬灣竹片附生藻類生產力之時空變化。國立中興大學植物學研究所碩士論文。共110頁。
呂愛琳,2001。測向傳輸與海底熱泉對南沖繩海槽斜坡錳分佈之影響。國立中山大學海洋地質及化學研究所碩士論文,共80頁。
洪佩瑩,2001。大鵬灣碳及營養鹽之生地化作用及通量研究。國立中山大學海洋地質及化學研究所碩士論文,共156頁。
郭芳旭,2000。七股潟湖碳、氮、磷之生地化作用與預算模擬。國立中山大學海洋地質及化學研究所碩士論文。共88頁。
許峻嵐,2000。高屏海域沈積物重金屬之分佈與污染史。國立中山大學海洋地質及化學研究所碩士論文,共133頁。
萬政康和洪佳章,2000。自然水體中汞含量之測定:改良式一次汞齊化冷蒸氣原子吸收光譜法。中華民國環境保護學會會誌,第二十三卷,第二期,125-138頁。
蔣國平,2000。高屏海域上層水體原生動物、異營性細菌生產力及群聚呼吸率之研究。高屏海域陸海交互作用之研究(I) 永續發展研究研討會論文集。10-18頁。
蔡娟娟,2001。營養鹽與溫度對墾丁南灣大型海藻生物量之影響。國立中山大學海洋生物研究所碩士論文,共95頁。
鐘仕偉、白書禎、陳秋妏、董正釱、歐錫祺,1997。海水中微量金屬元素濃縮問題的探討第二部份:以Chelex-100鉗合樹脂-石墨爐原子吸收光譜法測定海水中溶解性鎘銅鎳鋅鈷元素。化學 55卷 第一期,第29-35頁。
蕭水銀,1991。環境毒物對神經致毒作用。科學發展19(1),第75-79頁。
蘇惠美、林幸助、羅文增,2000。高屏海域藻類基礎生產力之研究。高屏海域陸海交互作用之研究(I) 永續發展研究研討會論文集。19-24頁。
蘇惠美,2002。高屏海域陸海交互作用及永續經營與管理。高屏海域浮游植物群聚與基礎生產力(I) 永續發展研究研討會論文集。214-215頁。
英文部分:

Adriano, D. C., 1986. Trace elements in the terrestrial environment. Springer-Verlag
New York Inc.
Andrew, R. W., K. E. Biesinger, and G. E. Glass, 1977. Effects of inorganic complexing on the toxicity of copper to Daphnia mahna, Wat. Res., 11:309-315.
Anderson, D. M., and F. M. M. Morel, 1978. Copper sensitivity of Gonyaulax
tamarensis, Limnol. Oceanogr., 23:283-295.
Baatrup, E., 1990. Structural and functional effects of heavy metals on the nervous system, including sense organs, of fish. Comp. Biochem. physiol.100 c(1/2):253-257.
Baeyens, M. and M. Leermakers, 1998. Elemental mercury concentrations and formation rates in the Scheldt Estuary and the North Sea. Mar. Chem., 60:257-266.
Bowen, H.T.M., 1979. Environmental chemistry of elements. Academic, London New York Toronto. 333pp.
Bonnvic, N. L., S. L. Huntly, B. W. Found and R. J. Wenning, 1994. Trace metal concentration in surficial sediments from Newark Bay, New Jersey. Geochim. Cosmochin. Acta, 63(1):113-127.
Brzezinski, M. A., 1985. The Si:C:N ratio of marine diatoms: interspecific variability and the effect of some environmental variables. J. Phycol., 21: 347-357.
Chester, R., 1990. Marine Geochemistry. Blackwell Science Inc, Boston, pp. 273-315.
Cossa, D. and J. –M. Martin, 1991. Mercury in the Rhone delta and adjacent marine areas. Mar. Chem., 36:291-302.
Cossa, D. and J., Noel, 1987. Concentrations of mercury in near shore surface waters of the Bay of Biscay and in the Gironde Estuary. Marine Chemistry, 20:389-396.
Florence, T. M., 1986, Electrochemical approaches to trace element speciation in waters, Analyst., 111: 489-505.
Forstner, U., 1990. Sediments chemistry and toxicity of in-place pollutants:Inorganic sediment chemistry and elemental speciation. Lewis Publishers, Chelsea, MI, pp.61-105.
Froelich, P. N., 1988. Kinetic controls of dissolved phosphate in natural river and estuaries: a primer on the phosphate buffer mechanism. Limnol. Oceanogr., 33: 649-668.
Galloway, J. N., 1979. Alteration of trace metal geochemical cycle due to the marine dischange of wastewater. Geochim. Cosmochim. Acta, 43:207-218.
Gill, G. A. and W. F. Fitzgerald, 1987. Mercury in surface waters of the open ocean. Global Biogeochemical Cycle, 1, pp. 199-212.
Gorden, D. C. Jr., P. R. Boudreau, K. H. Mann, J. E. Ong, W. L. Silvert, S. V. Smith, G. Wattayakorn, F. Wulff and T. Yanagi, 1996. LOICZ Biogeochemical Modeling LOICZ Reports & Studies NO. 5. vi +96pp. LOICZ. Texel, The Netherlands.
Green-Ruiz, C. and F. Paez-Osuna, 2001. Heavy metal anomalies in lagoon sediments related to intensive agriculture in Altata-Ensenada del Pabellon coastal system (SE Gulf of California). Environment International, 26, 265-273.
Hedges, J. I., 1987. Organic matter in sea water. Nature, 330: 205-206.
Howarth, R. W. 1988. Nutrient limitation of net primary production in marine ecosystems. Ann. Rev. Ecol., 19:89-110.
Hung, J. J and P. L. Lin, 1995. Distribution of dissolved organic carbon in the continental margin off northern Taiwan. Terrest. Atmos. Oceanogr., 6: 13-26.
Jackson, G. A., and J. J. Morgan, 1978. Trace metal-chelator interactions and phytoplankton growth in seawater media:Theoretical analysis and comparison with reported observations, Limnol. Oceanog., 23:268-282.
Jonnalagadda S.B. and P. V. V. Prasada Rao., 1993. Toxicity bioavailability and metal speciation. Comp. Biochem. Physiol. 106C(3):585-595.
Justic, D., N. N. Rabalais and R. E. Turner, 1995. Stoichiometric nutrient balance and origin of coastal eutrophication. Mar. Pollut. Bull., 30(1): 41-46.
Kemp, A. L. W. and R. L. Thomas, 1976. Impact of man’s activities on the chemical composition in the sediments of lake Ontario, Erie and Huron. Water Air Soil Pollution, 5:469-490.
Larned, S. T., 1998. Nitrogen-versus phosphorus-limited growth and sources of nutrients for coral reef macroalgae. Mar. Biol., 132:409-421.
Lacerda, L. D., G. O. Goncalves, 2001, Mercury distribution and speciation in waters of the coastal lagoons of Rio de Janeiro, SE Brazil, Mar. Chem., 76:47-58.
Li, Y-H., L. Burkhardt, M. Buchholtz, P. O’Hara and P. H. Santschi, 1984. Partition of radiotracers between suspended particles and seawater. Geochim. Cosmochim. Acta, 48: 2011-2019.
Lin, H.-J. and J.-J. Hung. 2004. Factors affecting macroalgal distribution in a eutrophic tropical lagoon in Taiwan. Marine Biology, 144: 653-664.
LOICZ, 1996. LOICZ Data and Information System Plan. LOICZ Reports and Studies NO. 6, The Netherlands.
Martin, J. M. and M. Whitfield, 1983. The significance of the river input of chemical elements to the ocean. In: Wong, C. S., Boyle, E., Bruland, K. W., Burton, J. D., Goldbreg, E. D. (Eds.), Trace Metals in Seawater. Plenum, New York.
Mason, R. P., and W. F., Fitzgerald, 1991. Mercury speciation in open ocean waters. Water, Air, and Soil Pollution, 56, 779-789.
Mason, R. P., and W. F., Fitzgerald, 1993. The distribution and biogeochemical cycling of mercury in the equatorial Pacific Ocean. Deep-Sea Research, Ⅰ, 40, 1897-1924.
Mason, R. P., N. M., Nicole, A. L., Lawrence, J. J., Leaner, J. G., Lee, G. R., Sheu, 1999. Mercury in the Chesapeake Bay. Marine Chemistry, 65, 77-96.
Mason, R. P., K. P. Rolfhus, and W. F. Fitzgerald, 1998. Mercury in the Noreth Atlantic. Marine Chemistry, 61, 37-53.
Mason, R. P. and K. A., Sullivan, 1999. The distribution and speciation of mercury in the South and equatorial Atlantic. Deep-Sea Research, Ⅱ, 46, 937-956.
Pai, S. C. and H. Y. Chen, 1994. Vertical distribution of cadmium in marginal seas of the western PacificOcean. Mar. Chem., 47:81-91.
Pai, S. C and C. C. Yang, 1990. Effects of acidity and mollybdate concentration on the kinetics of the formation of the phosphoantimonylbdenum blue complex. Anal. Chem. Acta., 229: 115-120.
Pankow, J. F. and S. W. McKenzie, 1991. Parameterizing the equilibrium distribution of chemicals between the dissolved, solid particulate matter, and colloidal matter compartments in aqueous systems. Environ. Sci. Technol., 25(12): 2046-2053.
Pederson, B. A. 1992. A microwave digestion technique for trace element analysis of industrial furnace feed-stream. Presented in the Boiler and Industrial Furance Meeting. Orlando, Florida Meeting organized by the Air & Waste Management Association.
Poulton, S. W. and R. Raiswell, 2000. Solid phase associations, oceanic fluxs and the anthropogenic perturbation of transition metals in world river particulates. Mar. Chem., 72: 17-31.
Redfield, A. C., B. H. Ketchum and F. A. Richard, 1963. The influence of organisms on the composition of sea water, In The Sea, vol. 2. Hill, M. H. (ed.), Interscience, New York, pp. 26-77.
Richards, F. A., 1965. Anoxic basin and fjords. In J. P. Riley and G. Skirrow (eds.), Chemical Oceanography, Academic Press, pp. 611-645.
Rowens, B.,1991. Respiratory failure and death following acute inhalation of mercury vapor. Chest. 99(1):185-90.
Seitzinger, S. P., 1988. Denitrification in freshwater and coastal marine ecosystems: ecological and geochemical significance. Limnol. Oceanogr., 33: 702-724.
Smith, S. V and J. T. Hollibaugh, 1989. Carbon-controlled nitrogen cycling in a marine “macrocosm”: an ecosystem-scale model for managing cultural eutrophication. Mar. Ecol. Prog. Ser., 52: 103-109.
Strickland, J. D. H and T. R., Parson, 1972. A Practical Handbook of Seawater Analysis. Bull. Fish. Res. Boasd Can., 2nd Edn., 167: 311pp.
Stumm, W. and J. J., Morgan, 1996. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. Wiley, New York, NY, 3rd ed., 1022pp.
Sunda, W. G., D. W. Engel, and R. M. Thuotte, 1978. Eddect of chemical speciation on toxicity of cadmium to grass shrimp, Palaemonents pugio:importance of free cadium ion, Environ. Sci. Tech., 12:409-413.
Sunda, W. G., and R. R. L. Guillaed, 1976, The relationship between cupricion activity and the toxicity of copper to phytoplankton, J. Mar. Res., 34: 511-529.
Vandal, G. M. and W. F. Fitzgerald, 1995. A preliminary mercury budget for Narragansett Bay (Rhode-Island, USA). Warter Air and Soil Pollution, 80, 679-682.
Walsh, J. J., 1991. Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen. Nature, 350: 53-55.
Welschmeyer, N. A., 1994. Dluormetric analysis of chlorophyll a on the presence of chlorophyll b and pheopigments. Limnol. Oceanogr., 39(8): 1985-1992.
Williams, S. C., H. J. Simpson, C. R. Olsen and R. F. Bopp, 1978. Sources of heavy metals in sediments of the Hundson River estuary. Mar. Chem., 6:195-216.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 張慧珍:<袁枚文論「復古說」之商榷>,《大陸雜誌》,1998年1月
2. 劉詠聰:<「曲園不是隨園叟,莫誤金釵作贄人」--袁枚與俞樾對女弟子態度之異同>,《嶺南學報[復刊號]》,1999年1月
3. 李運瑛:<事事關情 語語入情--「祭妹文」賞析>,《國文天地》,2000年9月
4. 張慧珍:<試析袁枚「祭妹文」與「先妣章太孺人行狀」二文之悲情>,《中國語文》,1998年12月
5. 張慧珍:<袁枚遊記作品之探討>,《輔英學報》,1995年12月
6. 江舉謙:<袁枚祭妹文>,《明道文藝》,1991年9月
7. 司仲敖:<袁枚其人與其思想>,《法商學報》,1991.06
8. 朱振藩:<隨園食色甲天下>,《聯合文學》,2003年6月
9. 陳美慧:<「隨園食單」中的食物製備與供應理念>,《中華家政學刊》,2001年12月
10. 王麗斐:<袁枚與婦女文學>,《臺南師院學生學刊》,1991年12月
11. 張健:<袁枚的不飲酒詩二十首析論>,《明道文藝》,1997年12月
12. 張慧珍:<論袁枚對袁宏道性靈說之沿革--從「情」、「才」、「學」三者觀之>,《大陸雜誌》1999年7月
13. 王鐿容:<從小眾到大眾:「隨園」的文化圖景>,《中極學刊》,2002年12月
14. 孫世民:<從袁枚性靈說析論杜甫「聞官軍收河南河北」詩>,《人文及社會學科教學通訊》2000年12月
15. 余淑瑛:袁枚其人及其性靈說,<嘉義技術學院學報>,1998.06