跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/30 16:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周文臣
研究生(外文):Wen-Chen Chou
論文名稱:南海時間序列測站海水之碳化學參數與碳-13之垂直分佈及其在混合層中的季節變化
論文名稱(外文):Seasonal Variability of CO2 Species and 13CTCO2 in the Mixed-layer and Their Vertical Distributions at the SEATS Site
指導教授:陳鎮東陳鎮東引用關係許德惇許德惇引用關係
指導教授(外文):Chen-Tung Arthur ChenDavid Der-Duen Sheu
學位類別:博士
校院名稱:國立中山大學
系所名稱:海洋地質及化學研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:211
中文關鍵詞:碳-13南海二氧化碳時間序列
外文關鍵詞:South China SeaTime-seriesCarbon dioxideS13C
相關次數:
  • 被引用被引用:12
  • 點閱點閱:559
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:1
東南亞時間序列研究(SEATS)測站是全球海洋時間序列觀測網中,唯一位於低緯度邊緣海域的測站。本研究利用2002年3月至2003年8月間八個SEATS探測航次所測得之TA、TCO2及��13CTCO2的數據,探討了SEATS測站碳化學參數在混合層中季節變化的特性,以及現今控制NTA、NTCO2和��13CTCO2垂直變化的作用機制。其目的乃在於增進吾等對此類型海域碳循環之瞭解,並可作為日後探討在人為活動影響下,南海碳化學系統所可能發生之變化時的對比依據。
研究結果顯示,春、夏兩季,NTCO2之遞減趨勢主要由生物生產作用所造成;混合層的深化,則是秋、冬兩季NTCO2濃度漸增的主因。根據冬、夏兩季NTCO2之濃度差所推算出全年之平均基礎生產力介於177 ± 34到363 ± 69 mgC m-2 day-1之間。fCO2呈現夏高冬低的季節性變化趨勢,且幾與溫度成完美的同步變化。此種季節變化之形成機制為:在溫度漸升的時期,溫度上升對fCO2之增加效果較生物生產對fCO2之減少效果為大,故fCO2隨溫度的增高而增大;在溫度遞減的時期,雖然次表層水加入混合層大幅提高了fCO2,但其增加效果不若溫度降低與生物生產加總對fCO2的減少效果,故fCO2呈現隨溫度而遞減的現象。SEATS測站在夏季及秋初明顯是大氣二氧化碳的“source”,冬季時為“sink”,春季及秋末則大致呈現海氣平衡的狀態。最高之二氧化碳海氣交換通量出現在冬季,此乃因東北季風之風速遠較其它季節為強所致。全年累計之二氧化碳海氣交換淨通量約介於-1.28 ± 0.94至-2.73 ± 2.20 gC m-2 yr-1之間。
PO43-、NO3-、AOU、NTA和NTCO2之垂直分佈呈現典型的“nutrient type”型態,意即隨深度增加而遞增。��13CTCO2之垂直變化,則呈現與PO43-、NO3-及AOU相反的趨勢。PO43-與AOU、NO3-與AOU和NO3-與PO43-在水深100m以下都呈現良好之線性相關,但三者線性關係之斜率卻明顯偏離了Redfield-ratio。PO43-和AOU線性關係斜率與Redfield-ratio的偏離,可由不同深度水樣PO43-起始值的差異所解釋;NO3-和AOU以及NO3-和PO43-之線性關係與Redfield-ratio的偏移,則可能與脫硝作用有關。
NTA由表層至水深150m處濃度大致不變,此乃因起始值之增加與有機質分解所造成TA之變化量相互抵銷的結果。其後NTA隨深度的遞增,是由起始值之增加及碳酸鈣的溶解所共同造成,在500m以上起始值的增加較碳酸鈣溶解作用重要;500m以下碳酸鈣溶解則是造成NTA隨深度遞增最重要的因素。NTCO2在400m以上隨深度之增加,主要是由起始值的增加和有機質的分解所造成,兩者之相對貢獻大略相等。400m以下,碳酸鈣溶解亦開始對NTCO2隨深度的增加有所貢獻,惟其仍較起始值和有機質分解作用之貢獻程度為小。IC/OC比之計算結果顯示,此比值隨深度遞增,最大值約為0.4,代表對任何深度而言,有機質的分解作用才是造成海水中TCO2增加的主因。此外根據TA所計算之碳酸鈣溶解量的結果顯示,在霰石及方解石化學飽和深度(分別為600m及2500m)之上,碳酸鈣即出現了溶解訊號。但由於碳酸鈣溶解並非TA唯一的來源,故此現象之真實性仍有待證實。由於有機質之��13C與海水��13CTCO2之差異極大,且有機質分解是海水中TCO2增加最重要的貢獻者。故��13CTCO2隨深度遞減趨勢是由有機質分解作用所主導形成。以碳化學及��13CTCO2資料所估算的結果都顯示,人為二氧化碳在SEATS測站的穿透深度約為1200m。整個垂直剖面所累積人為二氧化碳之總儲量約為18mol m-2。若將此結果套用於整個南海,則南海之人為二氧化碳總儲量約為0.5至0.6Gt C,此量約佔全球海洋人為二氧化碳總儲量的0.5%。在人為二氧化碳影響下,SEATS測站海水中TCO2增加量(�幅CO2)與��13CTCO2減輕量(����13CTCO2)的相對比值(����13CTCO2/�幅CO2)約為-0.024 ‰ (�慆ol kg-1)-1。
With regard to the concerns on the role of oceanic uptake of the increasing atmospheric CO2 concentration, a total of eight ocean time-series programs, have been established worldwide since the JGOFS era (i.e. late 1980s). Among these, the Southeast Asia Time-series Study (SEATS) site is the only one located in a “subtropical marginal sea”, namely the South China Sea (SCS). TA, TCO2, ��13CTCO2 and other pertinent chemical parameters were measured for seawater samples collected at the SEATS site from eight separate cruises between March 2002 and August 2003. Based on these measurements, the characteristics of the seasonal variability of CO2 species in the mixed-layer, the processes controlling the vertical distributions of NTA, NTCO2 and ��13CTCO2, and the magnitude of anthropogenic CO2 influence throughout the water column are thoroughly investigated to better understand the carbon cycles in such a subtropical marginal sea.
Results show that the decline of NTCO2 in spring-summer mainly results from in situ biological utilization in the mixed-layer, while the resurgence of NTCO2 in fall-winter is due to entrainment of the CO2-rich subsurface waters from below. Based on the drawdown of NTCO2 from winter to summer, the primary production is estimated to be 177�b34 ~ 363�b69 mgC m-2 day-1 in the mixed-layer. fCO2 increases progressively from spring to summer, then decreases from fall to winter. The seasonal variability of fCO2 is in phase with temperature changes, suggesting that the fCO2 seasonality is primarily controlled by temperature effect, though other factors have compensated partially to yield the observed low amplitude of its variability. The SEATS site is an atmospheric CO2 “source” in summer and early fall, but a “sink” in winter. The largest CO2 flux occurs in winter due to the high wind speed during winter monsoon. The annual sea-to-air CO2 flux at the SEATS site is estimated to be around -1.28�b0.94 to -2.73�b2.20 gC m-2 year-1.
A close examination on processes controlling the vertical variations of NTA, NTCO2 and ��13CTCO2 reveals that the increasing trend of NTA is resulted mainly from higher preformed-NTA and carbonate dissolution at deep, while organic oxidation and greater preformed-NTCO2 are responsible for the observed increasing trend in NTCO2. The decrease in ��13CTCO2 with depths, however, is principally owing to the decomposition of organic matter. Furthermore, carbonate dissolution accounts for approximately 30% of TCO2 production in the SCS deep waters, and it may have taken place at depths well above aragonite and calcite saturation depths at 600 m and 2500 m, respectively, in the SCS. Moreover, the penetration depth of anthropogenic CO2 at the SEATS site is estimated to be about 1200 m, based on both carbonate and ��13CTCO2 data. The ratio of the decrease of ��13CTCO2 to TCO2 increase, i.e. ����13CTCO2/�幅CO2, due to the uptake of anthropogenic CO2 is about -0.024‰ (�慆ol kg-1)-1.
目錄

誌謝……………………………………………………………………………………I
摘要…………………………………………………………………………………..III
ABSTRACT………………..…………………………………………………….…...V
目錄………………………………………………………………………………... VII
圖目錄………………………………………………………………………………..IX
表目錄………………………………………………………………………………..XI
一、緒論………………………………………………………………………………1
1.1 海洋碳循環研究之重要性及其研究策略………………………………….1
1.2 海洋碳循環之作用機制及其在全球海洋之運作概況………………….…6
1.3 東南亞時間序列研究之緣起與目的……………………………………...13
1.4 研究區域之背景介紹……………………………………………………...15
1.4.1 南海的地理型態……………………………………………………15
1.4.2 南海的氣候概況……………………………………………………17
1.4.3 南海的環流概況……………………………………………………19
1.4.4 南海的水文特性……………………………………………………21
1.5 論文目標…………………………………………………………………...22
二、研究方法………………………………………………………………………..25
2.1 研究材料…………………………………………………………………...25
2.2 實驗方法…………………………………………………………………...27
2.2.1 海水滴定總鹼度(TA)之測定………………………………………27
2.2.2 海水總二氧化碳(TCO2)之測定……………………………………27
2.2.3 海水總二氧化碳碳同位素組成(��13CTCO2)之測定………………...28
2.2.4 TA, TCO2和��13CTCO2分析精確度及準確度的評估……………….29
三、結果與討論……………………………………………………………………..32
3.1 SEATS測站混合層中滴定總鹼度/標準化鹼度(TA/NTA)、總二
氧化碳/標準化總二氧化碳(TCO2/NTCO2)及二氧化碳
分壓(fCO2)季節變化之初探…………………………………...….32
3.1.1混合層中溫度、鹽度、TA/NTA、TCO2/NTCO2及fCO2
之季節變化型態…………………………………………………...33
3.1.2 混合層中fCO2季節變化之控制機制……………………………...37
3.1.3二氧化碳海氣交換通量之季節變化………………………………..47
3.1.4基礎生產力之估算…………………………………………………..50
3.1.5碳氮消耗不平衡的現象……………………………………………..52
3.2 SEATS測站標準化鹼度(NTA)、標準化總二氧化碳(NTCO2)及
總二氧化碳碳同位素組成(��13CTCO2)之垂直分佈特徵:
控制機制及人為二氧化碳影響之探討…………………………...54
3.2.1磷酸鹽(PO43-)、硝酸鹽(NO3-)、表觀溶氧消耗量(AOU)、
NTA、NTCO2和��13CTCO2之垂直分佈……………….…………...54
3.2.2 NTA、NTCO2和��13CTCO2垂直變化之控制機制…………….……...61
3.2.3人為二氧化碳之影響…….…………...………………..…….……...72
四、結論………………………………………………………………………………81
參考文獻……………………………………………………………………………..86
附錄一 各航次鹽度、位溫、磷酸鹽、硝酸鹽、溶氧、總滴定鹼度、總
二氧化碳及��13CTCO2之數據………………………………………………99
附錄二 Chou, W.C., Sheu, D.D., Chen, C.T.A., Wang, S.L., Tseng, C.M.,
2004. Preliminary investigation on seasonal variability of
mixed-layer CO2, alkalinity, and fCO2 at the SEATStime-series
site, northern South China Sea, submitted to Deep-Sea Research I…...…106
附錄三 Chou, W.C., Sheu, D.D., Chen, C.T.A., Tseng, C.M., 2004. Vertical
distributions of alkalinity, TCO2, ��13CTCO2 at South East Asia
Time-series Study (SEATS) site: controlling processes and
anthropogenic CO2 influence (first draft)……………………….…….….147
作者簡介……………………………………………………………………………210


圖目錄

圖1.1 過去四十萬年來,南極地區大氣溫度與二氧化碳濃度隨時間
之變化圖…………………………………………………………………..1
圖1.2 西元900年至2000年,大氣二氧化碳濃度隨時間之變化圖…………..2
圖1.3 西元1850年至2000年,全球地表平均溫度異常隨時間之變
化圖………………………………………………………………………..3
圖1.4 西元1960年至2000年,大氣二氧化碳儲量月及年變化圖……………5
圖1.5 海洋碳循環運作機制:生物幫浦及物理幫浦之示意圖…………………7
圖1.6 全球海域表水之二氧化碳分壓在二月及八月時之分佈圖………………9
圖1.7 二氧化碳海氣交換年淨通量在全球海域之分佈圖……………………..10
圖1.8 人為二氧化碳在大西洋、印度洋和太平洋之分佈圖………….………...12
圖1.9 JGOFS海洋時間序列測站分佈圖………………………………………..13
圖1.10 南海海底地貌圖…………………………………………………………..16
圖1.11 南海季風風速和風向月平均變化圖……………………………………..17
圖1.12 南海表層海水水溫月平均變化圖………………………………………..18
圖1.13 南海之表面環流系統(a)冬季,(b)夏季………………………………….20
圖1.14 南海及西菲律賓海之溫鹽圖……………………………………………..21
圖2.1 南海之水深等深線及SEATS測站之位置圖…………………………….25
圖2.2 TA和TCO2標準品測量值與標定值之差異分佈圖……………………..30
圖3.1 2002年3月至2003年4月SEATS測站,混合層之(a)平均溫
度,(b)平均鹽度及(c)深度 之時間序列變化圖…………………….….35
圖3.1 (續)2002年3月至2003年4月SEATS測站,混合層之平
均(d)TA/NTA,(e)TCO2/NTCO2及(f)fCO2之時間序列變化圖……….36
圖3.2 北大西洋高緯地區(冰島附近海域)表水溫度及pCO2之季
節變化圖…………………………………………………………………38
圖3.3 BATS和ESTOC時間序列測站,混合層中溫度及pCO2之時
序變化圖…………………………………………………………………39
圖3.4 KNOT時間序列測站1998年至2000年表水pCO2之時序變
化圖………………………………………………………………………40
圖3.5 OSP時間序列測站混合層內pCO2及溫度之年時序變化圖……………41
圖3.6 HOT時間序列測站1988年底至1992年上層海水溫度與
pCO2之時序變化圖……………………………………………………..42
圖3.7 SEATS測站“fCO2mean corrected for �幅” 、“fCO2 at 27℃”以及
fCO2觀測值之時序變化圖……………………………………………...43
圖3.8 SEATS和HOT時間序列測站位溫、磷酸鹽與總二氧化碳濃
度之垂直分佈比較圖…………………………………………………..48
圖3.9 SEATS測站�惠CO2之時序變化圖………………………………………..49
圖3.10 SEATS測站PO43-、NO3-、AOU、NTA、NTCO2和��13CTCO2
之垂直分佈圖……………………………………………………………56
圖3.11 SATS測站(a) PO43- 對AOU,(b) NO3- 對AOU 和(c) NO3- 對
PO43-之關係圖…………………………………………………………...58
圖3.12 SEATS測站硝酸鹽異常值(N*)之垂直分佈圖……….………………….60
圖3.13 SEATS測站NTA實測值、NTA起始值和(NTA起始值+有
機質分解所造成TA之變化量)之垂直分佈圖………………………..63
圖3.14 SEATS測站NTCO2實測值、NTCO2起始值和(NTCO2起始
值+有機質分解所造成TCO2之變化量)之垂直分佈圖…………...….65
圖3.15 SEATS測站IC/OC比之垂直分佈圖…………………………………….67
圖3.16 SEATS測站霰石與方解石飽和度和碳酸鈣溶解所造成TCO2
增加量之垂直分佈圖……………………………………………………68
圖3.17 SEATS測站��13CTCO2實測值、��13CTCO2起始值和(��13CTCO2起
始值+有機質分解所造成��13CTCO變化量)之垂直分佈圖……………71
圖3.18 以“反算法”計算海水中人為二氧化碳含量之觀念流程圖………….….73
圖3.19 SEATS測站“人為二氧化碳”濃度之垂直分佈圖………………………..75
圖3.20 SATS測站��13CTCO2對PO43- 之關係圖…………………………………..78
圖3.21 SEATS測站����13Ca-p之垂直分佈圖………………………………………79

表目錄

表2.1 各航次之編號、探測日期及採樣深度表…………………………………26
表2.2 TCO2標準品重覆分析8次��13CTCO2之結果表…………………………..31
表 2.3 本實驗室與Dr. Spero實驗室針對南海2m, 400m, 1500m水樣
13CTCO2之分析結果比較表………………………………………………31
表3.1 SEATS與HOT、BATS、KNOT和OSP等時間序列測站,
溫度及生物效應對fCO2影響之相對重要性比較表…………………..46
表3.2 SEATS測站春、夏、秋、冬四季以及年平均二氧化碳海氣交
換通量之估算結果表……………………………………………………51
中文部份
王樹倫,1997,西北太平洋邊緣海二氧化碳之研究,國立中山大學海洋地質及化學研究所研究所博士論文,共226頁。
白書禎、郭廷瑜,1995,Trident-223三同步營養鹽測定系統(九五版)之設計與操作,國科會海研一號貴儀中心技術手冊,共26頁。
白書禎、郭廷瑜、鍾仕偉、蘇宗德,1998,疊氮修正希巴辣光度測氧法及其在環境監測上的應用,化學,第56卷第三期,173-185頁。
陳鎮東,2001,南海海洋學,渤海堂出版社,共506頁。

英文部份
Anderson, L.A., Sarmiento, J.L., 1994. Redfield ratios of remineralization determined by nutrient data analysis. Global Biogeochemical Cycles 8, 65-80.
Baliño, B.M., Fasham, M.J.R., Bowles, M.C., 2001. Ocean Biogeochemistry and Global Change. IGBP Science Series No. 2., ICSU, Stockholm, Sweden, 32pp.
Bates, N.R., Michaels, A.F., Knap, A.H., 1996. Seasonal and interannual variability of oceanic carbon dioxide species at the U.S. JGOFS Bermuda Atlantic-series Study (BATS) site. Deep-Sea Research II 43, 347-383.
Bates, N.R., Takahashi, T., Chipman, D.W., Knap, A.H., 1998. Variability of pCO2 on diel to seasonal timescales in the Sargasso Sea. Journal of Geophysical Research 103, 15567-15585.
Bates, N.R., 2001. Interannual variability of oceanic CO2 and biogeochemical properties in the Western North Atlantic subtropical gyre. Deep-Sea Research II 48, 1507-1528.
Benson, B.B., Krause, D., 1984. The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. Limnology and Oceanography 29, 620-632.
Berelson, W.M., 2001. The flux of particulate organic carbon into the ocean interior: a comparison of four U.S. JGOFS regional studies. Oceanography 14, 59-67.
Böhm, F., Joachimski, M.M., Lehnert, H., Morgenroth, G., Kretschmer, W., Vacelet, J., Dullo, W.C., 1996. Carbon isotope records from extant Caribbean and South Pacific sponges: Evolution of ��13C in surface water DIC. Earth and Planetary Science Letters 139, 291-303.
Bonneau, M.C., Bergnaud-Grazzini,C., Berger, W.H., 1980. Stable isotope fractionation and differential dissolution in recent planktonic foraminifera from Pacifc box cores. Oceanologica Acta 3, 377-382.
Broecker, W.S., Maier-Reime, E., 1992. The influence of air and sea exchange on the carbon isotope distribution in the sea. Global Biogeochemical Cycles 6, 315-320.
Buesseler, K.O., 2001. Ocean biogeochemistry and the global carbon cycle: an introduction to the U.S. Joint Global Ocean Flux Study. Oceanography 14, 5.
Brewer, P.G., Goldman, J.C., 1976. Alkalinity changes generated by phytoplankton growth. Limnology and Oceanography 21, 108-117.
Brewer, P.G., 1978. Direct measurement of the oceanic CO2 increase. Geophysical Research Letters 5, 997-1000.
Buesseler, K.O., 1998. The decoupling of production and particulate export in the surface ocean. Global Biogeochemical Cycles 12, 297-310.
Chen, C.T.A., 1990. Rates of calcium carbonate dissolution and organic carbon decomposition in the North Pacific Ocean. Journal of the Oceanographic Society of Japan 46, 201-210.
Chen, C.T.A., 2002. Shelf-vs. dissolution-generated alkalinity above the chemical lysocline. Deep Sea Research II 49, 5365-5375.
Chen, C.T.A., Millero, F.J., 1979. Gradual increase of oceanic CO2. Nature 277, 205-206.
Chen, C.T.A., Pytkowicz, R.M. Olson, E.J., 1982. Evaluation of the calcium problem in the South Pacific. Geochemical Journal 16, 1-10.
Chen, C.T.A., Rodmam, M.R., Wei, C.L., Olson, E.J., Feely, R.A., 1986. Carbonate Chemistry of the North Pacific Ocean. US Department of Energy Technical Report, DOE/NBB-0079, p. 176.
Chen, C.T.A., Huang, M.H., 1995. Carbonate chemistry and the anthropogenic CO2 in the South China Sea. Acta Oceanologica Sinica 14, 47-57.
Chen, C.T.A., Huang, M.H., 1996. A mid-depth front separating the South China Sea Water and the Philippine Sea Water. Journal of Oceanography 52, 17-25.
Chao, S.Y., Shaw, P.T., Wu, S.Y., 1996. El Niño modulation of the South China Sea circulation. Progress in Oceanography 38, 51-93.
Chen, C.T.A., Wang, S.L., 1998. Influence of intermediate water in the western Okinawa Trough by the outflow from the South China Sea. Journal of Geophysical Research 103, 12,683- 12, 688.
Chen, C.T.A., Wang, S.L., Wang, B. J., Pai, S.C., 2001. Nutrient budgets for the South China Sea basin. Marine Chemistry 75, 281- 300.
Chen, Y.L., Chen, H.Y., Lin, Y.H., 2003. Distribution and downward flux of Trichodesmium in the South China Sea as influenced by the transport from the Kuroshio Current. Marine Ecology Progress Series 259, 47-57.
Chen, Y.L., Chen, H.Y., Karl, D.M., Takahashi, M., 2004. Nitrogen modulates phytoplankton growth in spring in the South China Sea. Continental Shelf Research 24, 527-541.
Copin-Montégut, C., 2000. Consumption and production on scales of a few days of inorganic carbon, nitrate and oxygen by the planktonic community: results of continuous measurements at the Dyfamed station in the northwestern Mediterranean Sea (May 1995). Deep-Sea Research I 47, 447-477.
Craig, H., 1957. Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochimica et Cosmochimica Acta 12, 133-149.
Deutsch, C., Gruber, N., Key, R.M., Samiento, J.L., Ganachaud, A., 2001. Denitrification and N2 fixation in the Pacific Ocean. Global Biogeochemical Cycles 15, 483-506.
Dickson, A.G., 1981. An exact definition of total alkalinity and a procedure for the estimation of alkalinity and total inorganic carbon from titration data. Deep-Sea Research 28A, 609-623.
Dickson, A.G., Millero, F.J., 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Research I 34, 1733-1743.
DOE, 1994. Handbook of methods for the analysis of the various parameters of the carbon dioxide system in seawater. In: Dickson A.G., Goyet C. (Eds), U.S. Department of Energy CO2 science Team Report, version 2, (unpublished manuscript).
Duce, R.A., Tindale, N.W., 1991. Atmospheric transport of iron and its deposition in the ocean. Limnology and Oceanography 36, 1715-1726.
Ducklow, H.W., Steinberg, D.K., Buesseler, K.O., 2001. Upper ocean carbon export and the biological pump. Oceanography 14, 50-58.
Dyrssen, D., Sillén, L.G., 1967. Alkalinity and total carbonate in sea water: A plea for p-T independent data. Tellus 19, 113-120.
Feely, R.A., Sabine, C.L., Takahashi, T., Wanninkhof, R., 2001. Uptake and storage of carbon dioxide in the ocean: the global CO2 survey. Oceanography 14, 18-32.
Feely, R.A., Sabine C.L., Lee, K., Millero, F.L., Lamb, M.F., Greeley, D., Bullister, J.L., Key, R.M., Peng, T.H., Kozyr, A., Ono, T., Wong, C.S., 2002. In situ calcium carbonate dissolution in the Pacific Ocean. Global Biogeochemical Cycles 16, doi:10.1029/2002GB001866.
Friedli, H., Lötscher, H., Oeschger, H., Siegenthaler, U., Stauffer, B., 1986. Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature 324, 237-238.
Goericke, R., Fry, B., 1994. Variations of marine plankton ��13C with latitude, temperature, and dissolved CO2 in the world ocean. Global Biogeochemical Cycles 8, 85-90.
Gong, G.C., Liu, K.K., Liu, C.T., Pai, S.C., 1992. The chemical hydrography of the South China Sea west of Luzon and a comparison with the West Philippine Sea. Terrestrial, Atmospheric and Oceanic Sciences 3, 587-602.
González-Dávila M., Santana-Casiano, J.M., Rueda, M.-J, Llinás, O., González-Dávila, E.-F., 2003. Seasonal and interannual variability of sea-surface carbon dioxide species at the European Station for Time Series in the Ocean at the Canary Islands(ESTOC) between 1996 and 2000. Global Biogeochemical Cycles 17, doi:10.1029/2002GB001993.
Gruber, N., Sarmiento, J.L., Stocker, T.F., 1996. An improved method for detecting anthropogenic CO2 in the oceans. Global Biogeochemical Cycles 10, 809-837.
Gruber, N., Sarmiento J.L., 1997. Global patterns of marine nitrogen fixation and denitrification. Global Biogeochemical Cycles 11, 235-256.
Gruber, N., Keeling, C.D., Bacastow, R.B., Guenther, P.R., Lueker, T.J., Wahlen, M., Meijer, H.A.J., Mook, W.G., Stocker, T.F., 1999. Spatiotemporal patterns of carbon-13 in the global surface oceans and the oceanic Suess effect. Global Biogeochemical Cycles 13, 307-335.
Hansell, D.A., Carlson, C.A., 2001. Marine dissolved organic matter and the carbon cycle. Oceanography 14, 41-49.
Houghton J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Xiaosu, D., 2001. Climate Change 2001: The Scientific Basis contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, Cambridge, 944pp.
Hu, J.Y., Kawamura, H., Hong, H., Qi, Y.Q., 2000. A review on the currents in the South China Sea: seasonal circulation, South China Sea Warm Current and Kuroshio intrusion. Journal of Oceanography 56, 607-624.
Indermühle, A., Stocker, T.F., Joos, F., Fischer, H., Smith, H.J., Wahlen, M., Deck, B., Mastroianni, D., Tschumi, J., Blunier, T., Meyer, R., Stauffer, B., 1999. Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398, 121-126.
Karl, D.M., Letelier, L., Tupas, L., Dore, J., Christian, J., Hebel, D., 1997. The role of nitrogen fixation in biogeochemical cycling in the subtropical north Pacific ocean. Nature 386, 533-538.
Karl, D.M., Bates, N.R., Emerson, S., Harrison, P.J., Jeandel, C., Llinás, O., Liu, K.K., Marty, J-C, Michaels, A.F., Miquel, J.C., Neuer, S., Nojiri, Y., Wong, C.S., 2003. Temporal studies of biogeochemical processes determined from ocean time-series observations during the JGOFS era. In: Fasham, M.J.R. (Ed), Ocean Biogeochemistry: the role of the ocean carbon cycle in global change. Springer, Berlin, pp. 239-267.
Keeling, C.D., Whorf , T.P., 2004. Atmospheric CO2 records from sites in the SIO air sampling network. In Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn.
Keir, R., Rehder, G., Suess, E., 1998. The ��13C anomaly in the Northeastern Atlantic. Global Biogeochemical Cycles 12, 467-477.
Körtzinger, A., Quay, P.D., Sonnerup, R.E., 2003. Relationship between anthropogenic CO2 and 13C Suess effect in the North Atlantic Ocean. Global Biogeochemical Cycles 17, doi:10.1029/2001GB001427.
Kroopnick, P., 1974.The dissolved O2-CO2-13C system in the eastern equatorial Pacific. Deep-Sea Research 21, 211-227.
Kroopnick, P. M., 1985. The distribution of 13C of �顏O2 in the world oceans. Deep Sea Research 32, 57-84.
Kroopnick, P., Weiss, R.F., Chaig, H., 1972. Total CO2, 13C, and dissolved oxygen-18O at GEOSECS II in the North Atlantic. Earth and Planetary Science Letters 16, 103-110.
Lee, K., Millero, F.J., Byrne, R.H., Feely, R.A., Wannimkhof, R., 2000. The recommended dissociation constants for carbonic acid in seawater. Geophysical Research Letters 27, 229-232.
Lewis, E., Wallace, D.W.R., 1998. Program developed for CO2 system calculations, Carbon Dioxide Information Analysis Center, Report ORNL/CDIAC-105, Oak Ridge National Laboratory, Oak Ridge, Tenn.
Liang, W.D., Jan, J.C., Tang, T.Y., 2000. Climatological wind and upper ocean heat content in the South China Sea. Acta Oceanographica Taiwanica 38, 91-114.
Lin, H.L., Wnag, L.W., Wang, C.H., Gong, G.C., 1999. Vertical distribution of ��13C of dissolved inorganic carbon in the Northeastern South China Sea. Deep-Sea Research I 46, 757-775.
Liss, P.S., Merlivat, L., 1986. Air-sea gas exchange rates: introduction and synthesis. In: Buat-Menard, P. (Ed), The role of air-sea exchange in geochemical cycling, NATO ASI Series C: Mathematical and Physical Sciences, vol. 185, pp. 113-128.
Liu, K.K., Chao, S.Y., Shaw, P.T., Gong, G.C., Chen, C.C., Tang, T.Y., 2002. Monsoon-forced chlorophyll distribution and primary production in the South China Sea: observations and a numerical study. Deep-Sea Research I 49, 1387-1412.
Lueker, T.J., Dickson, A.G., Keeling, C.D., 2000. Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Marine Chemistry 70, 105-119.
Lynch-Stieglitz, J., Stocker, T.F., Broecker, W.S., Fairbanks, R.G., 1995. The influence of air-sea exchanges on the isotopic composition of oceanic carbon: Observations and modeling. Global Biogeochemical Cycles 9, 653-666.
Mackensen, A., Hubberten, H.W., Scheele, N., Schlitzer, R., 1996. Decoupling of ��13CTCO2 and phosphate in Recent Weddell Sea deep and bottom water: Implications for glacial Southern Ocean paleoceanography. Paleoceanography 11, 203-215.
McNeill, B.I., Matear, R.J., Tilbrook, B., 2001. Does carbon 13 track anthropogenic CO2 in the Southern Ocean? Global Biogeochemical Cycles 15, 597-614.
Mehrbach, C., Culberson, C.H., Hawley, J.E., Pytkowicz, R.M., 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnology and Oceanography 18, 897-907.
Michaels, A.F., Karl, D.M., Capone, D.G., 2001. Element stoichiometry, new production and nitrogen fixation. Oceanography 14, 68-77.
Milliman, J.D., Troy, P.J., Balch, W.M., Adams, A.K., Li, Y.H., Mackenzie, F.T., 1999. Biological mediated dissolution of calcium carbonate above the chemical lysocline. Deep Sea Research I 46, 1653-1669.
Mook, W.G., Bommerson, J.C., Staverman, W.H., 1974. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth and Planetary Science Letters 22, 169-176.
Neftel, A., Moor, E., Oeschger, H., Stauffer, B., 1985. Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries. Nature 315, 45-47.
Neuer, S., Davenport, R., Freudenthal, T., Wefer, G., Llinás, O., Rueda, M.J., Steinberg, D.K., Karl, D.M., 2002. Differences in the biological carbon pump at three subtropical ocean sites. Geophysical Research Letters 29, doi:10.1029/2002GL015393.
Ortiz, J.D., Mix, A.C., Wheeler, P.A., Key, R.M., 2000. Anthropogenic CO2 invasion into the northeast Pacific based on concurrent ��13CDIC and nutrient profiles from the California Current. Global Biogeochemical Cycles 14, 917-929.
Ose, T., Song, Y.K., Kitoh, A., 1997. Sea surface temperature in the South China Sea-an index for the Asian monsoon and ENSO system. Journal of Meteorological Society of Japan 75, 1091-1107.
Pai, S.C., Yang, C.C., Riley, J.P., 1990. Effects of acidity and molybdate concentration on the kinetics of the formation of the phosphoantimonylmolybdenum blue complex. Analytica Chimica Acta 229, 115-120.
Pai, S.C., Gong, G.C., Liu, K.K., 1993. Determination of dissolved oxygen in seawater by direct spectrophotometry of total iodine. Marine Chemistry 41, 343-351.
Pai, S.C., Riley, J.P., 1994. Determination of nitrate in the presence of nitrite in natural waters by flow injection analysis with a non-quantitative on-line cadmium reductor. Internal Journal Environmental Analysis Chemistry 57, 263-277.
Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., Pépin, L., Ritz, C., Saltzman, E., Stievenard, M., 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429-436.
Quay, P., Sonnerup, R., Westby, T., Stutsman, J., McNichol, A., 2003. Changes in the 13C/12C of dissolved inorganic carbon in the ocean as a tracer of anthropogenic CO2 uptake. Global Biogeochemical Cycles 17, doi:10.1029/2001GB001817.
Redfield, A.C., Ketchum, B.H., Richards, F.A., 1963. The influence of organisms on the composition of sea water. In : Hill, M.N. (Ed), The Sea, vol. 2. Interscience, New York, pp. 26-77.
Riebesell, U., Zondervan, I., Rost, B., Tortell, P.D., Zeebe, R.E., Morel, F.M.M., 2000. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407, 364-367.
Sabine, C.L., Feely,R.A., Key, R.M., Bullister, J.L., Millero, F.L., Lee, K., Peng, T.H., Tilbrook, B., Wong, C.S., 2002a. Distribution of anthropogenic CO2 in the Pacific Ocean. Global Biogeochemical Cycles 16, doi:10.1029/2001GB001639.
Sabine, C.L., Key, R.M., Feely, R.A., Greeley, D., 2002b. Inorganic carbon in the Indian Ocean: distribution and dissolution processes. Global Biogeochemical Cycles 16, doi:10.1029/2002GB001869.
Sambrotto, R.N., Savidge, G., Robinson, C., Boyd, P., Takahashi, T., Karl, D.M., Langdon, C., Chipman, D., Marra, J., Codispoti, L., 1993. Elevated consumption of carbon relative to nitrogen in the surface ocean. Nature 363, 248-249.
Shaw, P.T., 1991. The seasonal variation of the intrusion of the Philippine Sea Water inti the South China Sea. Journal of Geophysical Research 96, 821-827, 1991.
Shaw, P.T., Chao, S.Y., 1994. Surface circulation in the South China Sea. Deep-Sea Research I 41, 1663-1683.
Shiah, F.K., Liu, K.K., Tang, T.Y., 1999. South East Asia Time-series Station established in South China Sea. US JGOFS Newsletter 10, 8-9.
Siegenthaler, U., Samiento, J.L., 1993. Atmospheric carbon dioxide and the ocean. Nature 365, 119-125.
Sonnerup, R.E., Quay, P.D., McNichol, A.P., Bullister, J.L., Westby, T.A., Anderson, H.L., 1999. Reconstructing the oceanic 13C Suess effect. Global Biogeochemical Cycles 13, 857-872.
Takahashi, T., Olafsson, J., Goddard, J.G., Chipman, D.W., Sutherland, S.C., 1993. Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: a comparative study. Global Biogeochemical Cycles 7, 843-878.
Takahashi, T., Feely, R.A., Weiss, R., Wanninkhof, R.H., Chipman, D.W., Sutherland, S.C., Takahashi, T.T., 1997. Global air-sea flux of CO2: an estimate based on measurements of sea-air pCO2 difference. Proceedings of the National Academy of Science 94, 8292-8299.
Takahashi, T., Sutherland, S.C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., Bates, N.R., Wanninkhof, R., Feely, R.A., Sabine, C., Olafsson, J., Nojiri, Y., 2002. Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Research II 49, 1601-1622.
Tans, P.P., Fung, I.Y., Takahashi, T., 1990. Observational constraints on the global atmospheric CO2 budget. Science 247, 1431-1438.
Toggweiler, J.R., 1993. Carbon overconsumption. Nature 363, 210-211.
Tsunogai, S., 1972. An estimate of the rate of decomposition of organic matter in the deep water of the Pacific Ocean. In: Takenouti, Y., Shoten, I. (Eds), Biological Oceanography of the Northern North Pacific Ocean, Tokyo, pp. 517-533.
Tsurushima, N., Nojiri, Y., Imai, K., Watanabe, S., 2002. Seasonal variations of carbon dioxide system and nutrients in the surface mixed layer at station KNOT (44ºN, 155ºE) in the subarctic western North Pacific. Deep-Sea Research II 49, 5377-5394.
Wallace, D.W.R., 2001. Introduction to special section: Ocean measurements and models of carbon sources and sinks. Global Biogeochemical Cycles 15, 3-10.
Wang, J., Chern, C.S., 1987. The warm-core eddy in the northern South China Sea, I. Preliminary observations on the warm-core eddy. Acta Oceanographica Taiwanica 18, 92-103.
Wanninkhof, R., 1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research 97, 7373-7382.
Weiss, R.F., 1974. Carbon dioxide in water and seawater: The solubility of a non-ideal gas. Marine Chemistry 2, 203-215.
Winn, C.D., Mackenzie, F.T., Carrillo, C.J., Sabine, C.L., Karl, D.M., 1994. Air-Sea carbon dioxide exchange in the North Pacific Subtropical Gyre: Implications for the global carbon budget. Global Biogeochemical Cycles 8, 157-163.
Wong, C.S., Chan, Y.H., 1991. Temporal variations in the partial pressure and flux of CO2 at ocean Station P in the subartic northeast Pacific Ocean. Tellus 43B, 206-223.
Wong, G.T.F., Chung, S.W., Shiah, F.K., Chen, C.C., Wen, L.S., Liu, K.K., 2002. Nitrate anomally in the upper nutrientcline in the northern South China Sea- Evidence for nitrogen fixation. Geophysical Research Letters 29, doi:10.1029/2002GL015796.
Wu, J., Chung, S.W., Wen, L.S., Liu, K.K., Chen, Y.L., Chen, H.Y., Karl, D.M., 2003. Dissolved inorganic phosphorus, dissolved iron, and Trichodesmium in the oligotrophic South China Sea. Global Biogeochemical Cycles 17, doi:10.1029/2002GB001924.
Zhang, J., Quay, P.D., Wilbur, D.O., 1995. Carbon isotope fractionation during gas-water exchange and dissolution of CO2. Geochimica et Cosmochimica Acta 59, 107-114.
Zhang, Y., Sperber, K.R., Boyle, J.S., 1997. Climatology and interannual variation of the East Asian winter monsoon: results from the 1979-95 NCEP/NCAR reanalysis. Monthly Weather Review 125, 2605-2619.
Zondervan, I., Zeebe, R.E., Rost, B., Riebesell, U., 2001. Decreasing marine biogenic calcification: A negative feedback on rising atmospheric pCO2. Global Biogeochemical Cycles 15, 507-516.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top