跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/29 08:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳聖學
研究生(外文):San-xue Chen
論文名稱:漁港港內靜穩度之數值計算
論文名稱(外文):Numerical Computation of Water Tranquility in a Harbor
指導教授:許榮中許榮中引用關係
指導教授(外文):J.R.C. Hsu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋環境及工程學系研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:107
中文關鍵詞:靜穩度漁港緩坡方程式波高分佈
外文關鍵詞:harborMSETranquility
相關次數:
  • 被引用被引用:6
  • 點閱點閱:409
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:2
漁港是漁業發展最重要的基礎建設,維持港域靜穩與防止漂沙淤塞航道為保持漁港正常運作的重要課題。現今台灣地區之漁港雖多如停車場,但港域週遭靜穩度不足,急需規劃改善的情形,仍屢見不鮮。拜近代科技發達所賜,數值方法的研究獲得大幅進展,其模擬結果的準確性極高,相較於需要耗費大量時間金錢的水工模型試驗,電腦數值模擬提供了一個更有效率的選擇。
本研究採用日本琉球大學筒井茂明教授所開發的CATWAVES系統,進行港域週遭波高分佈的數值計算,以評估港域的靜穩度目標。CATWAVES系統以橢圓型緩坡方程式處理波浪變形機制,配合有限元素法,可有效處理不規則地形與邊界。文中詳述其運算流程,並對半無限長防波堤與橢圓形潛礁兩個古典案例,進行驗證,均獲得良好的適用性。
在實例方面,針對八斗子漁港與彌陀漁港兩個案例,以CATWAVES模式進行數值運算,驗證往昔改善設施的效益,並由各設計方案的數值模擬結果,研判及評選適當的漁港平面佈置,以進一步改善漁港的靜穩度。CATWAVES模式突破許多地形與港池幾何形狀限制,對於台灣漁港的波高計算有良好的適用性。
Harbor construction is the most important basic development in fishery. To sustain harbor tranquility and prevent entrance from siltation are essential for maintaining normal operations of a harbor. Although the number of fishing harbors in Taiwan is said to be as many as the car parks on the land, there are numerous reports of poor tranquility that required urgent public attention. Supported by recent development in science and technology, research advances in numerical modeling have produced accurate results from a range of numerical schemes. Comparing to the conventional hydraulic models that require long executive time and large budget, numerical modeling on computer is a most effective alternative.

In this study, the wave analysis system-CATWAVES developed by Professor Shigeaki Tsutsui at University of the Ryukyu in Okinawa, Japan is adopted to simulate the wave motions around a fishing harbor, in order to evaluate the tranquility of a harbor basin. CATWAVES calculates the transformation of surface gravity waves in the ocean using a mild-sloped equation of elliptic type. A finite-element scheme is used effectively to handle arbitrary bottom bathymetry and irregular boundary. This report first provides an outlines of the CATWAVES system, followed by verification of wave height distribution for two classic cases, being waves passing a semi-infinite breakwater in constant depth and waves propagating over a submerged circular shoal on a sloping beach, respectively.

The CATWAVES system is then applied to assess the harbor tranquility at two prototype fishing harbors in Taiwan. The first case is to verify the results of several improvement options tested in hydraulic models elsewhere to improve the tranquility at Badoutz, a class one fishing harbor in northeastern Taiwan. The second case is to provide a better alternative plan of breakwater extension at Mito, a class three harbor in the southwestern part of Taiwan, where excessive wave heights have been experienced by local fishermen. It is believed that Tsutsui’s CATWAVES system has made a great breakthrough in handling irregular bottom bathymetry and arbitrary outline of harbor plan. From the two prototype cases examined in this study, this system is found to be highly adaptive for calculating wave motions around any fishing harbor in Taiwan.
中文摘要…………………………………………….…………………………. i
英文摘要………………………………………………………………………. ii
誌謝…………………………………………………………………………….iii
目錄…………………………………………………………………………… iv
圖表目錄……………………………………………………………………… vi
第一章 序論
1.1 研究動機與目的…………………………………………………………...1
1.2 文獻回顧簡述…………………………………………………………….. 2
1.3本文架構………………………………………………………….……….. 4
第二章 台灣地區漁港防波堤之平面佈置
2.1 台灣地區漁港的建設沿革……………………………………………….. 5
2.2 漁港防波堤平面佈置…………………………………………………….. 9
2.2.1 防波堤功能 ---------------------------------------------------------------------------9
2.2.2 防波堤斷面分類---------------------------------------------------------------------10
2.2.3 防波堤平面佈置分類---------------------------------------------------------------11
第三章 波浪場數值模式之建立與應用
3.1 緩坡方程式的理論基礎………………………………………………… 15
3.1.1 緩坡方程式的推導----------------------------------------------------------------- 15
3.1.2 邊界條件------------------------------------------------------------------------------19
3.2 國內學者的緩坡方程式簡述…………………………………………… 21
3.3 筒井茂明教授的CATWAVES模式…………………………….……… 23
3.3.1 CATWAVES系統概述-------------------------------------------------------------- 23
3.3.2 CATWAVES的背景與沿革-------------------------------------------------------- 24
3.3.3 CATWAVES的可適用地形模式---------------------------------------------------25
3.3.4 控制方程式與邊界條件------------------------------------------------------------ 27
3.3.5 網格製作基本原則------------------------------------------------------------------ 31
3.3.6 波高計算流程------------------------------------------------------------------------ 33


第四章 古典案例分析
4.1半無限長防波堤…………………………………………………………. 36
4.2橢圓形潛礁………………………………………………………………. 38
第五章 漁港週遭波浪之數值計算
5.1 漁港港內靜穩度之考量……………………………………………….... 40
5.2 八斗子漁港港內波高計算實例.………………………………………... 41
5.2.1 八斗子漁港簡介-------------------------------------------------------------------- 41
5.2.2 基本資料----------------------------------------------------------------------------- 41
5.2.3 港口平面佈置方案----------------------------------------------------------------- 43
5.2.4 數值模擬過程與結果研判-------------------------------------------------------- 44
5.3 彌陀漁港港內與週遭波高計算………………………….……………... 58
5.3.1 彌陀漁港簡介----------------------------------------------------------------------- 58
5.3.2 基本資料----------------------------------------------------------------------------- 59
5.3.3 港口平面佈置方案----------------------------------------------------------------- 60
5.3.4 數值模擬過程與結果研判-------------------------------------------------------- 61
第六章 結論與建議
6.1 結論……………………………………………………………………… 66
6.2 建議……………………………………………………………………… 67
參考文獻……………………………………………….…………………….. 68
附錄1-半無限長防波堤之CATWAVES系統原始輸入檔
附錄2-橢圓潛礁之CATWAVES系統原始輸入檔
附錄3-八斗子漁港之CATWAVES系統原始輸入檔
附錄4-彌陀漁港之CATWAVES系統原始輸入檔
1.王永和(2000)。「利用有限元素法模擬波浪變形」,國立成功大學水利及海洋工程研究所碩士論文。
2.台灣漁業技術顧問社(1999)。「八斗子漁港東外廓防波(離岸)堤水工模型試驗及可行性評估報告」。台灣省政府農林廳漁業局委託,財團法人台灣漁業技術顧問社規劃。
3.台灣漁業及海洋技術顧問社 (2003) 。『台灣地區漁港系列』—「台灣地區漁港建設基本資料」專輯二十一小冊。行政院農業委員會漁業署委託,財團法人台灣漁業及海洋技術顧問社編印。
4.交通部(1996),「港灣構造物設計基準—防波堤設計基準及說明」,幼獅文化事業公司。
5.胡興華(2002),「話漁台灣」(漁業推廣專輯九),行政院農業委員會漁業署。
6.陳伯旭、蔡丁貴(1990),「局部輻射邊界條件在水波數值模式上之應用」,第十二屆海洋工程研討會論文集,第1-9頁。
7.陳伯旭、蔡丁貴(1997),「以有限元素法模擬近岸碎波波場」,八十六年度海岸工程數值模式研討會論文集,第29-40頁。
8.許泰文(2003),「近岸水動力學」。中國土木水利工程學會。
9.許泰文、蔡丁貴、顏朝卿、陳伯旭(1998),「以有限元素法模擬近岸波場」,第二十屆海洋工程研討會論文集,第491-499頁。
10.許泰文、藍元志、林貴斌(2000),「以有限元素法模擬大角度入射之波浪變形」,第二屆國際海洋大氣會議論文彙編,第160-165頁。
11.許泰文等人(2000),「建立波潮流與海岸變遷模式(1/6)」,成功大學水利及海洋工程學系報告,報告編號:MOEA/WRB/ST-8900020V1。
12.許榮中(1997),第十九屆海洋工程研討會專題演講-回顧與展望。國立中興大學。

13.許榮中(2001),「漂沙淤塞漁港之防治方案研究」。行政院農業委員會漁業署;編號90農科-1.4.5-漁-F4(2)。
14.湯麟武(1994),「港灣及海域工程」,(中國工程師手冊水利類第十一篇)。
15.溫志中(2000),「修正緩坡方程式之研發與應用」,國立成功大學水利及海洋工程研究所博士論文。
16.Behrendt, L. (1985). A finite element model for water wave diffraction including boundary absorption and bottom friction. Series Paper No. 37, Institute of Hydrodynamics and Hydraulic Engineering, Technique Report, University of Denmark.
17.Beltrami, G. M., G. Bellotti, P. De Girolamo, and P. Sammarco (2001). Treatment of wave-breaking and total absorption in a mild-slope equation FEM model, J. Waterway, Port, Coastal, and Ocean Eng., ASCE, 127(5):263-271.
18.Berkhoff, J.C.W. (1972). Computation of combined refraction-diffraction. Proc. 13th Inter. Conf. on Coastal Eng., ASCE, Vol. 1, pp. 471-490.
19.Berkhoff, J.C.W., N. Booij and A.C. Radder (1982). Verification of numerical wave propagation models for simple harmonic linear water waves. Coastal Eng., 6:255-279.
20.Bettess, P. and O. C. Zienkiewicz (1977). Diffraction and refraction of surface waves using finite and infinite element. Inter. J. for Numerical Methods in Eng., 11:1271-1290.
21.Booij, N.(1981). Gravity waves on water with non-uniform depth and current. Report No. 81-1, Department of Civil Engineering, Delft University of Technology, The Netherlands.
22.Chen, H. S. and C. C. Mei (1974). Oscillation and wave force on an offshore harbor, Ralph M. Parsons Laboratory, Massachussetts Institute of Technology, Report No. 190.
23.Chen, H. S. and C.C. Mei (1975). Hybrid-element method for water waves. Proc. Modelling Technics Conf.(Modelling 1975), Vol. 1, pp. 63-81.
24.Copeland, G.J.M. (1985). A practical alternative to the mild-slope wave equation. Coastal Eng., 9:125-149.

25.Cuthill, E. and J. McKee (1969). Reducing the bandwidth of sparse symmetric matrices. Proc. 24th Nat. Conf. Asso. for Computing Machinery, Brandon Press, New Jersey, pp.157-172.
26.Dalrymple, R.A., J. T. Kirby and P.A. Hwang (1984). Wave diffraction due to areas of energy dissipation. J. Waterway, Port, Coastal, and Ocean Eng., ASCE, 110:67-79.
27.Ebersole, B. A., M. A. Cialone and M. D. Prater (1986). Regional coastal processes numerical modeling system, Department of the Army Corps of Engineers, Waterway Experiment Station.
28.Friedrichs, K.O. (1948). Water waves on a shallow sloping beach. Comm. Appl. Math.,1:81-87.
29.Hsu, T. W. and C.C. Wen (2000). A study of using parabolic model to describe wave breaking and wide-angle wave incidence, J. Chinese Insitute of Engineers, 23(4):515-527.
30.Hsu, T. W. and C.C. Wen (2001a). A parabolic equation extend to account for rapidly varying topography, Ocean Eng., 28:1479-1498.
31.Hsu, T. W. and C.C. Wen (2001b). On radiation boundary conditions and wave transformation across the surf zone, China Ocean Eng., 15(3):395-406.
32.Ito, Y. and K. Tanimoto (1972). A method of numerical analysis of wave propagation-application to wave diffraction and refraction. Proc. 13th Inter. Conf. on Coastal Eng., ASCE, chapter 26, Vol.1, pp.502-522.
33.Izumiya, T. and K. Horikawa (1984). Wave energy equation applicable in and outside the surf zone. Coastal Eng. in Japan, JSCE, 27:119-137.
34.Keller, J.B. (1958). Surface waves on water of non-uniform depth. J. Fluid Mech., 4: 607-614.
35.Keller, J.B. (1962). Geometrical theory of diffraction. J. Opt. Soc. Am., 52(2):116-129.
36.Kerisel, G. (1949). Surface waves. Q. Appl. Math., 7:21-44.
37.Kirby, J. T. (1986). Higher-order approximations in the parabolic equation method for water waves, J. Geophysical Research, 91(C1):933-952.
38.Kirby, J. T. (1989). A note on parabolic radiation condition for elliptic wave calculation, Coastal Eng., 13:211-218.
39.Kirby, J. T. and R. A. Dalrymple (1991). User’s manual, combined refraction/diffraction model, Center for Applied Coastal Research, Department of Civil Engineering, University of Delaware, Newark, De19716, REF/DIF 1, Ver2.3.
40.Lamb, Sir H. (1932). Hydrodynamics. Dovers Publications, New York, 738pp.
41.Li, B. (1994a). An evolution equation for water waves. Coastal Engineering, 23:227-242.
42.Li, B. (1994b). A generalized conjugate gradient model for the mild slope equation, Coastal Eng., 23:215-225.
43.Li, B. (1997). Parabolic model for water waves, J. Waterway, Port, Coastal, and Ocean Eng., ASCE, 123(4):192-199.
44.Lowell, S.C. (1949). The propagation of waves in shallow water. Comm. Pure Appl. Math., 2: 275-291.
45.Lozano, C. and R.E., Meyer (1976). Leakage and response of waves trapped by round islands. Phys. Fluids, 19(8):1075-1088.
46.Maa, J.P. Y., T. W. Hsu, C. H. Tsai and W. J. Juang (2000). Comparison of wave refraction and diffraction models, J. Coastal Research, 16(4):1073-1082.
47.Maa, J.P. Y., T. W. Hsu and D. Y. Lee (2002). The RIDE Model: An enhance computer program for wave transformation, Ocean Eng., 29:121-128.
48.Madsen, P. A. and J. Larsen (1987). An efficient finite difference approach to the mild slope equation, Coastal Eng., 11:329-351.
49.Mei. C. C.(1983). The Applied Dynamics of Ocean Surface Waves. John Wiley and Sons, New York, 740 pp.
50.Meyer, R.E.(1979). Theory of water wave refraction. In (editor:C.-S. Yih), Advances in Applied Mechanics, Vol. 19. Academic Press, New York, pp. 53-141.
51.Penney, W.G., and A.T. Price(1952). The diffraction theory of sea waves and the shelter afforded by breakwaters. Philos. Trans. Roy. Soc. A, 244(822):236-253.
52.Radder, A.C. (1979). On the parabolic equation method for water wave propagation. J. Fluid Mech., 95:159-176.
53.Sommerfeld, A. (1896). Mathematische theorie der diffraction. Math. An., 47, pp. 317; and Optics, Lectures on Ttheoretical Physics, Vol. IV, Acadmic Press, New York.
54.Sommerfeld, A. (1964). Mechanics of deformable bodies, Vol. 2 in Lectures on Theoretical Physics, Academic Press, New York.
55.Steward, D. R. and V. G. Panchang (2000). Improved coastal boundary conditions for water simulation models, Ocean Eng., 28:139-157.
56.Suh, K. D., C. Lee and W. S. Part (1997). Time-dependent equations for wave propagation on rapidly varying topography, Coastal Eng., 32:91-117.
57.Sulaiman, D. M., S. Tsutsui, H. Yoshioka, S. Oshiro, and Y. Tsuchiya (1994). Prediction of the maximum wave on the coral flat. Proc. 24th Inter. Conf. on Coastal Eng., ASCE, 6.9-6.23.
58.Thompson, E. F., H. S. Chen and L. L. Hadley (1996). Validation of numerical model for wind waves and swell in harbors, J. Waterway, Port, Coastal, and Ocean Eng., ASCE, 122(5):245-257.
59.Tsai, C. P., H. B. Chen, and J. R. C. Hsu (2001). Calculations of wave transformation across the surf zone, Ocean Eng., 28:941-955.
60.Tsutsui, S. (1995). Model equations combining full linear dispersion with long wave nonlinearity, Part II. Bull. Faculty of Eng., Univ. of the Ryukyus, Vol.50, pp.45-54 (in Japanese).

61.Tsutsui, S. (2002). CATWAVES:Wave Analysis System, User’s Guide, version 5. Dept. of Civil Engineering and Architecture, University of the Ryukyus, Okinawa, Japan.
62.Tsutsui, S. (2003). Coastal wave-deformation models combined with integrable-type infinite elements. Coastal Eng. in Japan, JSCE, 45(1):83-118.
63.Tsutsui, S. and D. P. Lewis (1992). Wave height prediction in unbounded coastal domains with bathymetric discontinuity. Coastal Eng. in Japan, JSCE, 34:145-158.
64.Tsutsui, S. and H. Ohki (1998a). Nonlinear wave evolution on the slope- and step-type reefs. Proc. Coastal Eng., JSCE, 45:41-45. (In Japanese).
65.Tsutsui, S. and H. Ohki (1998b). Model equations combining full linear dispersion with long wave nonlinearity, Part IV, application of Bi-CGSTAB to sparse nonsymmetric systems. Bull. Faculty of Eng., Univ. of the Ryukyus, Vol.55, pp.17-25. (In Japanese).
66.Tsutsui, S., K. Suzuyama and H. Ohki (1996). Model equations combining full linear dispersion with long wave nonlinearity, Part III, Nonlinear evolution of waves on the step-type reef. Bull. Faculty of Eng., Univ. of the Ryukyus, Vol.52, pp.25-39. (In Japanese).
67.Tsutsui, S., K. Suzuyama and H. Ohki (1998). Model equations of nonlinear dispersive waves in shallow water and an application of its simplest version to wave evolution on the step-type reef. Coastal Eng. Journal, JSCE, 40(1):41-60.
68.Tsutsui, S. and K. Zamami (1993). Jump condition of energy flax at the line of bathymetric discontinuity and wave breaking on the reef flat. Coastal Eng. in Japan, JSCE, 36:155-175.
69.Watanbe, A. and M. Dibajnia (1988). A numerical model of wave deformation in surf zone, Proc. 21th Inter. Conf. on Coastal Eng., ASCE, Vol. 1, pp. 578-587.
70.Xu, B., V. G. Panchang and Z. Demirbilek (1996). Exterior reflections in elliptic harbor wave model, J. Waterway, Port, Coastal, and Ocean Eng., ASCE, 122(3):118-
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top