1.王永和(2000)。「利用有限元素法模擬波浪變形」,國立成功大學水利及海洋工程研究所碩士論文。2.台灣漁業技術顧問社(1999)。「八斗子漁港東外廓防波(離岸)堤水工模型試驗及可行性評估報告」。台灣省政府農林廳漁業局委託,財團法人台灣漁業技術顧問社規劃。
3.台灣漁業及海洋技術顧問社 (2003) 。『台灣地區漁港系列』—「台灣地區漁港建設基本資料」專輯二十一小冊。行政院農業委員會漁業署委託,財團法人台灣漁業及海洋技術顧問社編印。
4.交通部(1996),「港灣構造物設計基準—防波堤設計基準及說明」,幼獅文化事業公司。
5.胡興華(2002),「話漁台灣」(漁業推廣專輯九),行政院農業委員會漁業署。
6.陳伯旭、蔡丁貴(1990),「局部輻射邊界條件在水波數值模式上之應用」,第十二屆海洋工程研討會論文集,第1-9頁。
7.陳伯旭、蔡丁貴(1997),「以有限元素法模擬近岸碎波波場」,八十六年度海岸工程數值模式研討會論文集,第29-40頁。
8.許泰文(2003),「近岸水動力學」。中國土木水利工程學會。
9.許泰文、蔡丁貴、顏朝卿、陳伯旭(1998),「以有限元素法模擬近岸波場」,第二十屆海洋工程研討會論文集,第491-499頁。
10.許泰文、藍元志、林貴斌(2000),「以有限元素法模擬大角度入射之波浪變形」,第二屆國際海洋大氣會議論文彙編,第160-165頁。
11.許泰文等人(2000),「建立波潮流與海岸變遷模式(1/6)」,成功大學水利及海洋工程學系報告,報告編號:MOEA/WRB/ST-8900020V1。
12.許榮中(1997),第十九屆海洋工程研討會專題演講-回顧與展望。國立中興大學。
13.許榮中(2001),「漂沙淤塞漁港之防治方案研究」。行政院農業委員會漁業署;編號90農科-1.4.5-漁-F4(2)。
14.湯麟武(1994),「港灣及海域工程」,(中國工程師手冊水利類第十一篇)。
15.溫志中(2000),「修正緩坡方程式之研發與應用」,國立成功大學水利及海洋工程研究所博士論文。16.Behrendt, L. (1985). A finite element model for water wave diffraction including boundary absorption and bottom friction. Series Paper No. 37, Institute of Hydrodynamics and Hydraulic Engineering, Technique Report, University of Denmark.
17.Beltrami, G. M., G. Bellotti, P. De Girolamo, and P. Sammarco (2001). Treatment of wave-breaking and total absorption in a mild-slope equation FEM model, J. Waterway, Port, Coastal, and Ocean Eng., ASCE, 127(5):263-271.
18.Berkhoff, J.C.W. (1972). Computation of combined refraction-diffraction. Proc. 13th Inter. Conf. on Coastal Eng., ASCE, Vol. 1, pp. 471-490.
19.Berkhoff, J.C.W., N. Booij and A.C. Radder (1982). Verification of numerical wave propagation models for simple harmonic linear water waves. Coastal Eng., 6:255-279.
20.Bettess, P. and O. C. Zienkiewicz (1977). Diffraction and refraction of surface waves using finite and infinite element. Inter. J. for Numerical Methods in Eng., 11:1271-1290.
21.Booij, N.(1981). Gravity waves on water with non-uniform depth and current. Report No. 81-1, Department of Civil Engineering, Delft University of Technology, The Netherlands.
22.Chen, H. S. and C. C. Mei (1974). Oscillation and wave force on an offshore harbor, Ralph M. Parsons Laboratory, Massachussetts Institute of Technology, Report No. 190.
23.Chen, H. S. and C.C. Mei (1975). Hybrid-element method for water waves. Proc. Modelling Technics Conf.(Modelling 1975), Vol. 1, pp. 63-81.
24.Copeland, G.J.M. (1985). A practical alternative to the mild-slope wave equation. Coastal Eng., 9:125-149.
25.Cuthill, E. and J. McKee (1969). Reducing the bandwidth of sparse symmetric matrices. Proc. 24th Nat. Conf. Asso. for Computing Machinery, Brandon Press, New Jersey, pp.157-172.
26.Dalrymple, R.A., J. T. Kirby and P.A. Hwang (1984). Wave diffraction due to areas of energy dissipation. J. Waterway, Port, Coastal, and Ocean Eng., ASCE, 110:67-79.
27.Ebersole, B. A., M. A. Cialone and M. D. Prater (1986). Regional coastal processes numerical modeling system, Department of the Army Corps of Engineers, Waterway Experiment Station.
28.Friedrichs, K.O. (1948). Water waves on a shallow sloping beach. Comm. Appl. Math.,1:81-87.
29.Hsu, T. W. and C.C. Wen (2000). A study of using parabolic model to describe wave breaking and wide-angle wave incidence, J. Chinese Insitute of Engineers, 23(4):515-527.
30.Hsu, T. W. and C.C. Wen (2001a). A parabolic equation extend to account for rapidly varying topography, Ocean Eng., 28:1479-1498.
31.Hsu, T. W. and C.C. Wen (2001b). On radiation boundary conditions and wave transformation across the surf zone, China Ocean Eng., 15(3):395-406.
32.Ito, Y. and K. Tanimoto (1972). A method of numerical analysis of wave propagation-application to wave diffraction and refraction. Proc. 13th Inter. Conf. on Coastal Eng., ASCE, chapter 26, Vol.1, pp.502-522.
33.Izumiya, T. and K. Horikawa (1984). Wave energy equation applicable in and outside the surf zone. Coastal Eng. in Japan, JSCE, 27:119-137.
34.Keller, J.B. (1958). Surface waves on water of non-uniform depth. J. Fluid Mech., 4: 607-614.
35.Keller, J.B. (1962). Geometrical theory of diffraction. J. Opt. Soc. Am., 52(2):116-129.
36.Kerisel, G. (1949). Surface waves. Q. Appl. Math., 7:21-44.
37.Kirby, J. T. (1986). Higher-order approximations in the parabolic equation method for water waves, J. Geophysical Research, 91(C1):933-952.
38.Kirby, J. T. (1989). A note on parabolic radiation condition for elliptic wave calculation, Coastal Eng., 13:211-218.
39.Kirby, J. T. and R. A. Dalrymple (1991). User’s manual, combined refraction/diffraction model, Center for Applied Coastal Research, Department of Civil Engineering, University of Delaware, Newark, De19716, REF/DIF 1, Ver2.3.
40.Lamb, Sir H. (1932). Hydrodynamics. Dovers Publications, New York, 738pp.
41.Li, B. (1994a). An evolution equation for water waves. Coastal Engineering, 23:227-242.
42.Li, B. (1994b). A generalized conjugate gradient model for the mild slope equation, Coastal Eng., 23:215-225.
43.Li, B. (1997). Parabolic model for water waves, J. Waterway, Port, Coastal, and Ocean Eng., ASCE, 123(4):192-199.
44.Lowell, S.C. (1949). The propagation of waves in shallow water. Comm. Pure Appl. Math., 2: 275-291.
45.Lozano, C. and R.E., Meyer (1976). Leakage and response of waves trapped by round islands. Phys. Fluids, 19(8):1075-1088.
46.Maa, J.P. Y., T. W. Hsu, C. H. Tsai and W. J. Juang (2000). Comparison of wave refraction and diffraction models, J. Coastal Research, 16(4):1073-1082.
47.Maa, J.P. Y., T. W. Hsu and D. Y. Lee (2002). The RIDE Model: An enhance computer program for wave transformation, Ocean Eng., 29:121-128.
48.Madsen, P. A. and J. Larsen (1987). An efficient finite difference approach to the mild slope equation, Coastal Eng., 11:329-351.
49.Mei. C. C.(1983). The Applied Dynamics of Ocean Surface Waves. John Wiley and Sons, New York, 740 pp.
50.Meyer, R.E.(1979). Theory of water wave refraction. In (editor:C.-S. Yih), Advances in Applied Mechanics, Vol. 19. Academic Press, New York, pp. 53-141.
51.Penney, W.G., and A.T. Price(1952). The diffraction theory of sea waves and the shelter afforded by breakwaters. Philos. Trans. Roy. Soc. A, 244(822):236-253.
52.Radder, A.C. (1979). On the parabolic equation method for water wave propagation. J. Fluid Mech., 95:159-176.
53.Sommerfeld, A. (1896). Mathematische theorie der diffraction. Math. An., 47, pp. 317; and Optics, Lectures on Ttheoretical Physics, Vol. IV, Acadmic Press, New York.
54.Sommerfeld, A. (1964). Mechanics of deformable bodies, Vol. 2 in Lectures on Theoretical Physics, Academic Press, New York.
55.Steward, D. R. and V. G. Panchang (2000). Improved coastal boundary conditions for water simulation models, Ocean Eng., 28:139-157.
56.Suh, K. D., C. Lee and W. S. Part (1997). Time-dependent equations for wave propagation on rapidly varying topography, Coastal Eng., 32:91-117.
57.Sulaiman, D. M., S. Tsutsui, H. Yoshioka, S. Oshiro, and Y. Tsuchiya (1994). Prediction of the maximum wave on the coral flat. Proc. 24th Inter. Conf. on Coastal Eng., ASCE, 6.9-6.23.
58.Thompson, E. F., H. S. Chen and L. L. Hadley (1996). Validation of numerical model for wind waves and swell in harbors, J. Waterway, Port, Coastal, and Ocean Eng., ASCE, 122(5):245-257.
59.Tsai, C. P., H. B. Chen, and J. R. C. Hsu (2001). Calculations of wave transformation across the surf zone, Ocean Eng., 28:941-955.
60.Tsutsui, S. (1995). Model equations combining full linear dispersion with long wave nonlinearity, Part II. Bull. Faculty of Eng., Univ. of the Ryukyus, Vol.50, pp.45-54 (in Japanese).
61.Tsutsui, S. (2002). CATWAVES:Wave Analysis System, User’s Guide, version 5. Dept. of Civil Engineering and Architecture, University of the Ryukyus, Okinawa, Japan.
62.Tsutsui, S. (2003). Coastal wave-deformation models combined with integrable-type infinite elements. Coastal Eng. in Japan, JSCE, 45(1):83-118.
63.Tsutsui, S. and D. P. Lewis (1992). Wave height prediction in unbounded coastal domains with bathymetric discontinuity. Coastal Eng. in Japan, JSCE, 34:145-158.
64.Tsutsui, S. and H. Ohki (1998a). Nonlinear wave evolution on the slope- and step-type reefs. Proc. Coastal Eng., JSCE, 45:41-45. (In Japanese).
65.Tsutsui, S. and H. Ohki (1998b). Model equations combining full linear dispersion with long wave nonlinearity, Part IV, application of Bi-CGSTAB to sparse nonsymmetric systems. Bull. Faculty of Eng., Univ. of the Ryukyus, Vol.55, pp.17-25. (In Japanese).
66.Tsutsui, S., K. Suzuyama and H. Ohki (1996). Model equations combining full linear dispersion with long wave nonlinearity, Part III, Nonlinear evolution of waves on the step-type reef. Bull. Faculty of Eng., Univ. of the Ryukyus, Vol.52, pp.25-39. (In Japanese).
67.Tsutsui, S., K. Suzuyama and H. Ohki (1998). Model equations of nonlinear dispersive waves in shallow water and an application of its simplest version to wave evolution on the step-type reef. Coastal Eng. Journal, JSCE, 40(1):41-60.
68.Tsutsui, S. and K. Zamami (1993). Jump condition of energy flax at the line of bathymetric discontinuity and wave breaking on the reef flat. Coastal Eng. in Japan, JSCE, 36:155-175.
69.Watanbe, A. and M. Dibajnia (1988). A numerical model of wave deformation in surf zone, Proc. 21th Inter. Conf. on Coastal Eng., ASCE, Vol. 1, pp. 578-587.
70.Xu, B., V. G. Panchang and Z. Demirbilek (1996). Exterior reflections in elliptic harbor wave model, J. Waterway, Port, Coastal, and Ocean Eng., ASCE, 122(3):118-