跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/07/28 03:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭凱文
研究生(外文):Kai-wen Cheng
論文名稱:以SBEACH模擬颱風暴浪引起之海灘剖面變化
論文名稱(外文):Application of SBEACH:modeling of storm-induced beach profile change
指導教授:許榮中許榮中引用關係
指導教授(外文):John R.C. Hsu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋環境及工程學系研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:100
中文關鍵詞:海灘剖面暴風
外文關鍵詞:SBEACHbeach
相關次數:
  • 被引用被引用:9
  • 點閱點閱:446
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
當颱風過境時,海灘受到颱風暴浪的影響,往往造成灘線後退,同時被侵蝕的沙灘則被帶到碎波帶附近形成離岸沙洲。颱風過後,隨著餘湧及季節性波浪之作用,沙洲逐漸向陸移動,甚至消失,海灘逐漸回復;在這種機制下,海灘剖面週而復始形成一個動態平衡。
本文以SBEACH系統模擬在不同波浪條件作用下,海灘剖面之變化。研究內容主要探討以SBEACH之波浪計算模組預測碎波發生範圍,再由預測的碎波位置推估沙洲的分佈。報告並比較美國工程師兵團海岸工程研究中心(CERC)大型波浪水槽試驗之資料,說明SBEACH模擬灘線位置的結果與參數設定關係。
研究結果顯示,以SBEACH之最大波高的向離岸分佈圖推算碎波波高可以得到良好的結果。藉由最大波高的向離岸分佈圖所推估的沙洲頂峰位置分佈亦相當準確。報告中透過分析不同率定參數(預設率定參數及Larson (1996)所提出之簡諧波率定參數)的模擬結果,經迴歸分析得沙洲頂峰離岸距離Xc/L0與深海波尖銳度H0/L0及Xc/L0與碎波參數ξ0,都存在良好的線性與乘冪關係。由存在的線性或乘冪關係所繪出沙洲分佈位置與波浪條件之關係圖為預測沙洲位置提供一個有效的工具。報告中並指出,若與大型水槽試驗結果相比較,在灘線模擬應用方面可能出現四種SBEACH的模擬結果,並且發現藉由率定參數的調整可以有效提高SBEACH模擬的可靠性。在不考慮大波浪尖銳度造成較小的灘線侵蝕的一些CERC案例時,由模擬結果迴歸分析得到,無因次化灘線後退X/L0與深海波浪尖銳度H0/L0有一良好的線性關係。
在實際工程應用方面,本研究以花蓮北濱海岸為例,規劃當地海岸緩衝帶。雖然影響海岸漂沙的因素繁多,藉由SBEACH模式,在海岸剖面變化的模擬,與配合平衡岬灣軟體MEPBAY繪製靜態灣線,可為海岸工程人員提供更一具體的規劃工具。
ABSTRACT

Storm waves affect beach berm and even dunes, resulting in shoreline retreat accompanying by the formation of a submerged bar in the vicinity of the breakers. After a storm wanes, bar material originally may removed from the beachprogressively move landwards by subsequent swell which prevails at the time to assist beach recovery. Such repetitive processes are the nature way to maintain a beach profile in dynamic condition.
This research essay reports an application of SBEACH software to simulate beach profile changes induced by different storm conditions. Upon applying the wave module within SBEACH , the range of broken waves during a storm is first calculated, which is in turn to help locate the range of bar crest. Comparisons are then given for bar crest position and the extent of shoreline recession simulated by SBEACH and the original beach profile data obtained from large wave tank (LWT) tests conducted of the Coastal Engineering Research Center (CERC), US Army Corps of Engineers. The effect of resetting the values to several key parameters in the sediment transport equation is also investigated.
The present study confirms that cross-shore distribution of the maximum wave heights, one of the many important outputs from SBEACH, can be successfully applied for the estimation of wave breaker heights and the prediction of bar crest positions. In addition, from setting different values to some key calibration parameters used in the model (e.g., the default calibration values and Larson’s (1996) calibration parameters for monochromatic waves), bar crest distance offshore Xc/Lo can be linearly related to deep-water wave steepness Ho/Lo, while bar crest position Xc/Lo versus surf similarity parameter �鋌 in a power form. The graphical representation for Xc/Lo, either in linear or power relationship derived from regression analysis, provides sufficient information for the estimation of bar crest position from an input wave condition. Moreover, four different categories of shoreline pridition have been found between the simulated results from SBEACH model using LWT wave conditions as inputs and that of the LWT tests themselves. It may be concluded that fine adjustment to some key calibration parameters could enhance the reliability of SBEACH model. From excluding the CERC data series which exhibit large Ho/Lo value with small shoreline recession, the extent of non-dimensional shoreline retreat X/Lo is found in good linear relationship with deepwater wave steepness Ho/Lo.
Finally, SBEACH software is applied to demonstrate potential engineering application at Beibin (North) Beach in Hualien, Taiwan. A rational beach recession distance calculated using SBEACH will be used as a local beach buffer for a beach nourishment project. Although many complex factors are involved in nearshore sediment transport, the combination of a proper beach buffer from SBEACH model for simulating beach profile changes and MEPBAY software for planning a stable bay beach in static equilibrium has the potential to become a perfect planning tool for coastal engineers.
中文摘要 i
ABSTRACT ii
目錄 iii
圖目錄 v
表目錄 vii

第一章 緒論
1.1 前言 1
1.2 研究動機與目的 2
1.3 研究方法與步驟 3
1.4 文獻回顧 3
1.4.1湧浪型平衡剖面 3
1.4.2暴浪型平衡剖面 9

第二章 海灘剖面變化之計算考量
2.1 海灘斷面之分類 12
2.2 大型波浪水槽實驗 13
2.3 傳輸區域及傳輸率 18
2.4 波浪計算模式 20
2.4.1模式相容性及使用限制 20
2.4.2波浪之數值計算 22
2.5 SBEACH海灘剖面變化之計算簡介 27
2.5.1模式相容性及使用限制 27
2.5.2剖面變化之數值計算 28

第三章 SBEACH系統介紹
3.1 SBEACH系統簡介 33
3.1.1 SBEACH之發展 34
3.1.2 SBEACH輸入設定及介面說明 35
3.1.2.1海灣設定(Reach Configuration) 35
3.1.2.2 暴風設定(Storm Configuration) 42
3.2 SBEACH系統的運算與輸出資料 47

第四章 SBEACH之工程應用
4.1 大型波浪水槽試驗之沙洲過程驗證 49
4.2 SBEACH 輸入設定 50
4.3 最大波高分佈與碎波關係 51
4.4 碎波沙洲驗證 54
4. 4. 1 沙洲頂峰位置分佈 54
4. 4. 2 沙洲頂峰相對位置之預測 57
4.5 灘線變化模擬結果 67
4.6 SBEACH率定參數與灘線模擬 77
4.7 暴浪作用下灘線後退距離預測 81
4.8 SBEACH模式於海岸緩衝帶之設計應用-以花蓮北濱為例 84

第五章 結論與建議
5.1 結論 89
5.2 建議 92

參考文獻 93
參考文獻
Allen, J.R.L.,(1970). The avalanching of granular solid on dune and similar sloes, J. Geology, 78(3):326-351
Bascom, M.N., (1951). The relationship between sand size and beach face slope. Trans. American Geographical Union, 32(6): 866-874.
Battjes, J.A., (1974). Surf similarity. Proc. 14th Inter. Conf. Coastal Eng., ASCE, vol.1, pp.466-480.
Birkemeier, W.A., N.C. Kraus, N.W. Scheffner, and S.C. Knowles, (1987). Feasibility study of quantitative erosion models for use by the federal Emergency Management Agency in the prediction of coastal flooding. Technical Report CERC-87-8, Coastal Engineering Research Center, U.S. Army Crops of Engineers, Waterways Experiment Station, Vicksburg, MS.
Bruun, P., (1954). Coast erosion and the development of beach profiles. Tech. Memo 44, Beach Erosion Board, U.S. Army Corps of Engineers, Washington,D.C.
Bodge, K.R., (1992). Representing equilibrium beach profiles with an expression, J. Coastal Research, 8:47-55.
Bowen, A.J., (1980). Simple models of nearshore sedimentation:beach profiles and longshore bars. In The Coastaline of Canada:Littoral Processes and Shore Morphology, Geological Survey of Canada, Ottwa, Ontario.1-11.
Dally, W.R., and R.G. Dean (1984). Suspended sediment transport and beach profile evolution, J. Waterway, Ports, Coastal and Ocean Eng., ASCE, 110(1):15-33.
Dally, W.R.,(1985). Wave height variation across beaches of arbitrary profile. J. Geophysical Research, 90(6):11917-11927.
Dolan, T.J., (1983). Wave mechanics for the formation of multiple longshore bars with emphasis on the Chesapeake Bay. M.S. thesis, Dept. of Civil Engineering, University Delaware.
Davies, A.G., (1982). On the interaction between surface waves and undulations of the seabed, J. Marine Res., 40:331-368.
Davies, A.G., E. Guazzelli and M. Belzons, (1989). The propagation of long waves over an unduating bed. Phys. Fluids., A1:1331-1340.
Davies, A.G., and A.D. Heathershaw, (1984). Surface propagation over sinusoidally varying topography. J. Fluid Mech., 144:419-443.
Dalrymple R.A. and J .T. Kirby, (1986). Water waves over ripples, J. Waterway, Port, Coastal Ocean and Eng., ASCE, 112:309-319.
Dean, R.G., (1977). Equilibrium beach profile:U.S. Atlantic and Gulf Coasts. Department of Civil Engineering, Ocean Engineering Report No.12, University of Delaware, Newark, Delaware.
Dean, R.G., (1987). Coastal sediment processes:Toward engineering solutions. Proc. Coastal Sediments ’87, ASCE, pp.1-24.
Dean, R.G., (1991). Equilibrium beach profiles:Characteristics and applications, J. Coastal Research, 7(1):53-84.
Dette, H.H., and K.Uliczka, (1987). Prototype investigation on time-dependent dune recession and beach erosion. Proc. Coastal Sediments ’87, ASCE, vol.2:pp.1430-1444.
Ebersole, B.A., (1986). Measurements and prediction of wave height decay in the surf zone. Proc. 20th Inter. Conf. on Coastal Eng., ASCE, pp.1765-1781.
Fenneman, N. M.,( 1902). Development of the profile of equilibrium of the subaqueous shore terrace, J. Geology, 6 (4):532-545.
Galvin, C.J., (1969). Breaker travel and choice of design wave height. J. Waterways and Harbors Division, ASCE, 95(2):175-200.
Guazzelli, E., V. Rey, and M. Belzons., (1992). Highly-order Bragg reflection of gravity surface waves by periodic beds. J. Fluid Mech., 245:301-317.
Hara, T. and C.C. Mei, (1987). Bragg reflection of surface waves by periodic beds:theory and experiment, J. Fluid Mech., 178:221-241.
Heathershaw, A.D., (1982). Seabed-wave resonance and sand bar growth, Nature, 296:343-345.
Heathershaw, A.D. and A.G. Davies, (1985). Resonance wave reflection by tranverse bedforms and its relation to beaches and offshore bars. Marine Geology, 62:321-338.
Horikawa, K. and C.T. Kuo, (1966). A study on wave transformation inside the surf zone. Proc. 10th Inter. Conf. Coastal Eng., ASCE, vol. 1, pp.217-233.
Hsu. T.W. and H.Wang, (1997). Geometric characteristics of storm beach profiles. J. Coastal Research, 13(4):1102-1110.
Inman, D. L., M.H.S. Elwany and S.A. Jenkins, (1993). Shorerise and bar-berm profiles on ocean beaches, J. Geophysical Research, 98(10):18181-18199.
Rosati J.D., R.A .Wise, N.C. Kraus, and M.Larson, (1993). SBEACH:Numerical Model for Simulating Storm-Induced Beach Change, Report3, User’s Manual. Coastal Eng. Res. Center, US. Army Crops of Engineers.
Kajima, R., T.Shimizu, K.Maruyama, and S.Saito, (1982). Experiments of beach profile change with a large wave flume. Proc. 18th Inter. Conf. Coastal Eng., ASCE , vol. 2, pp.1385-1404.
Kajima, R., S. Saito, T. Shimizu, K. Maruyama, H. Hasegawa, and T. Sakakiyama, (1983). Sand transport experiments performed by using a large wave tank. Central Res. Inst. for Electric Power Industry, Japan, Data Rep. No. 4-1.
Keulegan, G.H. and W.C. Krumbein, (1949). Stable configuration of bottom slope in a shallow sea and its bearing on geological processes. EOS Trans. AGU, 30(6):855-861.
Klein A.H.F., A.Vargas, A.L.A. Raabe, and J.R.C. Hsu, (2003). Visual assessment of bayed beach stability with computer software. Computers and Geosciences, 29:1249-1257.
Kirby, J. T., (1986). A general wave equation for waves over rippleed beds. J. Fluid Mech., 162:171-186.
Kriebel, D.L. (1982). Beach and dune response to hurricanes, Unpulished M.S. Thesis, University of Delaware, Newark.
Kriebel, D.L. and R.G. Dean, (1985). Numerical simulation of time-depent beach and dune erosion, Coastal Eng., Vol 9:221-245.
Kriebel, D.L., W.R. Dally, and R.G. Dean, (1986). Beach profile response following severe erosion events. Report UFL/COEL-86/016, Coastal and Oceanographic Department, University of Forida, Gainesville, FL.
Kirby, J. T., (1989). Proagation of surface waves over undulating bed. Phys. Fluid, Al:1898-1899
Komar, P. D. and W. T. McDougal, (1992), State of the art practice in coastal engineering, Coastal Eng., pp. 12-13.
Kraus, N.C., N.W. Scheffner, H. Hanson, L.W. Chou, M. A. Cialone, J.M. Smith, and T.A. Hardy,(1988). Coastal processes at sea bright to ocean township, New Jersey, Volume I:Main text and Appendix A, Miscellaneous Paper CERC-88-12, Coastal Engineering Research Center, U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS.
Kraus, N.C., and M. Larson, (1988a). Beach profile change measured in the wave tank for large waves, 1956-1957 and 1962. Coastal Eng. Res. Center, Tech. Rep. CERC-88-6, U.S. Army Crops of Engrs., Waterways Exp. Stn., Vicksburg, Miss.
Kraus, N.C., and M. Larson, (1988b). Prediction of initial profile adjustment on nourished beaches to wave action,1956-1957 and 1962. Technology ’88, Florida Shore and Beach Preservation Association, 125-137.
Larson, M. (1988). Quantification of beach profile change, D. Sc. Thesis, Department of Water Resources Engineering, University of Lund, Sweden.
Larson, M. and N.C. Kraus, (1989). Prediction of beach fill response to varying wave and water level. Proc. Coastal Zone ’89, ASCE, pp. 607-621.
Larson, M., (1991). Equilibrium profile of a beach with varying grain size. Proc. Coastal Sediments ’91, ASCE, vol 1, pp. 905-919.
Lee, P.Z.-F. (1994). The submarine equilibrium profile: a physical model. J. Coastal Research, 10(1):1-17.
Longuet-Higgins, M.S. and R.W. Stewart, (1962). Radiation stress and mass transport in gravity waves with application to ‘surf beat’, J. Fluid Mech., 13:481-504.
Longuet-Higgins, M.S. and R.W. Stewart, (1963). A note on wave set-up, J. Marine Research, 21:4-10.
McCowan, J., (1894). On the highest wave of permanent type. Phil. Mag. J. Sci., 38:351-358.
Larson, M. and N. C. Kraus, and M.R. Byrnes, (1990). SBEACH: Numerical model for simulating storm-induced beach change, Report 2, Numerical Formulation and Model Tests.Tech Rept. CERC 89-9. Coastal Engineering Research Center, US Army Corps of Engineers.
Larson M. and N.C. Kraus (1992), Analysis of cross-shore movement of natural longshore bars and material placed to create longshore bars, Coastal Eng. Res. Center, US Army Corps of Engineers, Washington, DC.
Mattioli, F., (1991). Resonance reflection of surface waves by non-sinusoidal bottom undulations. Applied Ocean Res., 13:49-53.
Mei, C.C., (1985). Resonance reflection of surface waves by periodic sand bars. J. Fluid Mech., 152:315-335.
Kraus N.C.,and M.R. Byrnes, (1990). Shoreline change and storm-induced beach erosion modeling: a collection of seven papers. US Army Corps of Engineers, Washington, DC.
Roelvink, J.A., and M.J.F. Stive, (1989). Bar-generating cross-shore flow mechanisms on a beach, J. Geoghys. Research, 94(C4):4785-4800.
Short, A.D., (1975). Multiple offshore bars and standing waves, J. Geophys Res., 80:3838-3840.
Sommerfeld, B.G, N.C. Kraus, and M. Larson, (1996). SBEACH interface user’s manual. Final Report. Conrad Blucher Institute for Surveying and Science, U.S.A.
Sunamura, T., and K. Horikawa, (1974). Two-dimensional beach transformation due to waves, Proc. 14th Inf. Conf. on Coastal En., ASCE, pp. 920-938.
Silvester, R, and J.R.C. Hsu, (1993). Coastal Stabilization:Innovative Concepts. Englewood Cliffs, NJ:Prentice Hall.
Silvester, R, and J.R.C. Hsu, (1997). Coastal Stabilization. Singapore:World Scientific. (Reprint of Silvester and Hsu, 1993)
Singamsetti, S.R., and H.G. Wind, (1980). Breaking waves characteristics of shoaling and breaking periodic waves normally incident to plane beaches of constant slope, Report M 1371, Delft Hydraulics Laboratory, Delft, The Netherlands.
Sunamura, T. (1980). A laboratory study of offshore transport of sediment and a model for eroding beaches, Proc. 17th Inter. Conf. Coastal Engineering, ASCE, pp. 920-938.
Svendsen, I.A., P.A. Madsen, and J.B. Hansen, (1978). Wave characteristics in the surf zone, Proc.16th Inter. Conf. Coastal Int. Conf. Eng., ASCE, vol 1, 520-539.
Svendsen, I.A., (1987). Analysis of surf zone turbulence, J. Geophysical Research, 92(C5):5115-5124.
Van Rijn, L. C., (1998). Principles of Coastal Morphology. Aqua Publications, The Netherlands.
Wise, A., S. Smith, and M. Larson, (1996). SBEACH: Numerical model for simulating storm-induced beach change, Report 4, Cross-shore transport under random waves and model validation with supertank and field data. Tech Rept. CERC 89-9. Coastal Engineering Research Center, US Army Corps of Engineers,Vicksburg, MS.
郭金棟(1988)。「海岸工程學」,中國土木工程學會,第359~361頁。
陳陽益(1991)。「自由表面規則前進重力波傳遞於波形底床上共振現象」,第十五屆力學會議論文集,台灣台南,第 289-296頁。
陳陽益、何良勝、湯麟武(1991)。「波形底床上規則前進重力波之解析(III)有限長度之波形底床上波場共振情況 」,第十三屆 海洋工程研討會論文集,台灣台北,第 270-295頁。
許鵬、許泰文(1994)。「宜蘭海岸海灘斷面變化特性研究」,國立成功大學水利及海洋工程碩士班碩士論文。
許泰文、廖建明、林毅政(1998)。「暴風型海灘平衡剖面預測模式研究」,中國土木水利工程學刊,第十卷,第二期,第271-278頁。
郭一羽(2001)。「海岸工程學」,文山書局,第203∼205頁。
曾以帆、許泰文、李忠潘、張憲國 (2001)。「一般型海灘斷面形狀函數之探討」,第二十三屆 海洋工程研討會論文集,第 494-495頁。
許泰文(2001),「海岸漂沙」。海岸工程學,第203-212頁。
經濟部水利署第九河川局(2001a)。花蓮縣海岸地形觀測成果報告。
經濟部水利署第九河川局(2001b)。台灣海岸防護工作之檢討。
廖奕鈞、王兆璋、李忠潘、柯文貴(2002)。「人工沙洲碎波條件及特性研究」,第二十四屆海洋工程研討會論文集,第541-547頁。
謝信良。「百年侵台颱風之統計分析與應用」。中央氣象局,http://www.cwb.gov.tw/V4/index.htm
邱筱嵐(2004)。「以人工岬灣與養灘綜合工法應用於花蓮南、北濱海岸」,國立中山大學海洋環境及工程學系,碩士論文,第45-64頁。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top