跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 15:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳泰銘
研究生(外文):Tai-ming Chen
論文名稱:大型浮式海域平台受波浪作用之動力行為減振研究
論文名稱(外文):The Dynamic Performance Improvement and Vibration Suppression with Turned Liquid Column Dampers to the Tension Leg Platform
指導教授:李賢華李賢華引用關係
指導教授(外文):H-h Lee
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋環境及工程學系研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:138
中文關鍵詞:浮體結構物液柱阻尼器
外文關鍵詞:TLCDLCVA
相關次數:
  • 被引用被引用:3
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:0
繫纜式浮體結構物目前以廣泛的應用於海洋結構物上,如海上鑽油平台、浮式機場、浮式防波堤等。海上平台的使用除了安全性的考量外,最重要的是穩定性與舒適性,也就是降低波浪衝擊作用下所產生的搖晃與振動。從過去的研究中發現,當結構物附加諧調液柱阻尼器(Turned Liquid Column Damper, TLCD)後確實有減振的效果存在。
本研究將繫纜式浮體結構物的浮筒部分改裝成TLCD,其優點有:1.不改變浮台主體結構,保有提供浮力之功能;2.TLCD內裝填液體後,利用液體的振盪吸收或消散能量;3.利用裝填液柱長度有限度改變整體結構物之自然頻率,以達最佳消能功用。本文以理論為基礎下,設計水工模型來模擬結構物在有無附加TLCD下的減振消能效果,分別擷取結構物surge、heave與pitch三個方向之加速度值與纜繩張力值,作為實驗數據比較。
由實驗過程中可發現,結構物附加TLCD後,大致來看都能夠有效的降低三個方向之反應。因此如何找出各種情況下的最佳減振消能設計為本文所討論重點。
In this study, a tension leg platform (TLP) incorporated with the TLCD (Tuned liquid column damper) is tested experimentally. The advantages of TLP with TLCD devices are as follows:1.When the TLCD devices use on the TLP, the columns under the platform could provide the buoyant force. 2. When the TLCD devices are injected into water, the vibration of the platform could be mitigated by the water sloshing power. 3. It can change the natural frequency within limits by changing the liquid length.
In this thesis, a scaled-down model is tested in the laboratory to verify the analytical results. When the experiment tested, the total mass of the system should be the same no matter if the TLCD devices are applied or not. We used the accelerometers to obtained the acceleration of the platform including the surge, heave and pitch motions. The tendon force is obtained by the strain gage.
Can be found from the experiment course, after the structure adds the TLCD devices, the responses of three motion can be effective reduced. So what reducing shaking to disappear and can be designed and discussed best by this text under various kinds of situations of finding out.
目錄
中文摘要
英文摘要
目錄 Ⅰ
圖目錄 Ⅳ
表目錄 ⅩⅡ
照片 ⅩⅢ
符號說明 ⅩⅣ
第一章 序論 1
1.1 研究目的 1
1.2 研究背景 1
1.3 文獻回顧 2
1.3.1繫纜式浮體結構物 2
1.3.2諧調液柱阻尼器 3
1.4 本文架構 4
第二章 浮體結構物運動理論解析 6
2.1 浮體裝置TLCD之運動方程式 6
2.2 一般浮體結構物外力解析 10
2.3 結構物附加TLCD後之外力項計算與複數頻率反應函數 12
2.4 結構附加TLCD後之波浪作用力頻譜及反應頻譜 14
第三章 水工模型實驗設計 19
3.1 實驗儀器及設備 19
3.2 模型設計 20
3.2.1相似理論與模型縮尺 20
3.2.2 實驗模型製作 21
3.2.3 繫纜繩彈性係數測試 22
3.3 實驗波浪條件 23
3.4 實驗計畫與結構附加TLCD條件 23
3.4.1試驗波浪週期固定、波高固定、液柱長度改變之比較 23
3.4.2液柱長度固定、波高固定、試驗波浪週期改變之比較 24
3.4.3試驗波浪週期固定、液柱長度固定、波高改變之比較 24
3.5 實驗數據分析 24
3.6 實驗步驟 25
3.6.1 電阻應變計之黏貼與率定工作 25
3.6.2 結構體運動之量測 26
3.6.3 注意事項 26
第四章 實驗結果與數值模擬討論 33
4.1 實驗結果與討論 33
4.1.1 試驗波浪週期固定、波高固定、液柱長度改變 33
4.1.2 液柱長度固定、波高固定、試驗波浪週期改變 36
4.1.3 試驗週期固定、液柱長度固定、波高改變 38
4.2 實驗結果與數值模擬之討論 40
4.2.1 數值模擬條件之給定 40
4.2.2實驗值與理論值之比較 40
4.2.3實驗值與理論值之差異探討 41
第五章 綜合結論與建議 115
5.1 結論 115
5.2 建議 116
參考文獻 118
附錄A 123
附錄B 129
附錄C 131
附錄D 135



圖目錄
圖2.1 諧調液柱阻尼器(TLCD)細部構造圖 17
圖2.2 繫纜式浮體結構物示意圖 17
圖2.3繫纜式浮體結構物在六個自由度上的位移示意圖 18
圖3.1 實驗水槽佈置圖 27
圖3.2 實驗模型設計圖(前視) 27
圖3.3實驗模型設計圖(側視) 27
圖3.4實驗模型設計圖(俯視) 28
圖3.5 TLCD水平管徑5.6公分之細部圖 28
圖3.6 TLCD水平管徑8.4公分之細部圖 28
圖3.7 棉繩之應力--應變圖 29
圖3.8 應變計之電壓—張力關係式圖 29
圖4.1 confining piping ψ=5.6 cm, orifice=1, T=1.5 sec, H=6cm, Ld=55 cm,有無裝設TLCD之位移與頻譜的比較 45
圖4.2 confining piping ψ=5.6 cm, orifice=1, T=1.5 sec, H=6cm, Ld=60 cm,有無裝設TLCD之位移與頻譜的比較 46
圖4.3 confining piping ψ=5.6 cm, orifice=1, T=1.5 sec, H=6cm, Ld=65 cm,有無裝設TLCD之位移與頻譜的比較 47
圖4.4 confining piping ψ=5.6 cm, orifice=1, T=1.5 sec, H=6cm, Ld=70 cm,有無裝設TLCD之位移與頻譜的比較 48
圖4.5 confining piping ψ=5.6 cm, orifice=1, T=1.5 sec, H=6cm, Ld=75 cm,有無裝設TLCD之位移與頻譜的比較 49
圖4.6 confining piping ψ=5.6 cm, orifice=1, T=1.5 sec, H=6cm, Ld=80 cm,有無裝設TLCD之位移與頻譜的比較 50

圖4.7 confining piping ψ=5.6 cm, orifice=1, T=1.5 sec, H=6cm, Ld=85 cm,有無裝設TLCD之位移與頻譜的比較 51
圖4.8 confining piping ψ=5.6 cm, orifice=1, T=1.5 sec, H=6cm, Ld=90 cm,有無裝設TLCD之位移與頻譜的比較 52
圖4.9 confining piping ψ=5.6 cm, orifice=1, T=1.5 sec, H=6cm, Ld=95 cm,有無裝設TLCD之位移與頻譜的比較 53
圖4.10 confining piping ψ=5.6 cm, orifice=1, T=1.5 sec, H=6cm, Ld=100 cm,有無裝設TLCD之位移與頻譜的比較 54
圖4.11 confining piping ψ=5.6 cm, orifice=1, T=1.5 sec, H=6cm, Ld=105 cm,有無裝設TLCD之位移與頻譜的比較 55
圖4.12 confining piping ψ=5.6 cm, orifice=1, T=1.5 sec, H=6cm, Ld=110 cm,有無裝設TLCD之位移與頻譜的比較 56
圖4.13 Bh=8.4cm, orifice opening ψ=5.6cm, T=1.5sec, H=6cm, Ld=55cm,有無裝設TLCD之位移與頻譜的比較 57
圖4.14 Bh=8.4cm, orifice opening ψ=5.6cm, T=1.5sec, H=6cm, Ld=60cm,有無裝設TLCD之位移與頻譜的比較 58
圖4.15 Bh=8.4cm, orifice opening ψ=5.6cm, T=1.5sec, H=6cm, Ld=65cm,有無裝設TLCD之位移與頻譜的比較 59
圖4.16 Bh=8.4cm, orifice opening ψ=5.6cm, T=1.5sec, H=6cm, Ld=70cm,有無裝設TLCD之位移與頻譜的比較 60
圖4.17 Bh=8.4cm, orifice opening ψ=5.6cm, T=1.5sec, H=6cm, Ld=75cm,有無裝設TLCD之位移與頻譜的比較 61
圖4.18 Bh=8.4cm, orifice opening ψ=5.6cm, T=1.5sec, H=6cm, Ld=80cm,有無裝設TLCD之位移與頻譜的比較 62
圖4.19 Bh=8.4cm, orifice opening ψ=5.6cm, T=1.5sec, H=6cm, Ld=85cm,有無裝設TLCD之位移與頻譜的比較 63
圖4.20 Bh=8.4cm, orifice opening ψ=5.6cm, T=1.5sec, H=6cm, Ld=90cm,有無裝設TLCD之位移與頻譜的比較 64
圖4.21 confining piping ψ=5.6 cm, orifice=1, T=1.5 sec, H=6cm,有無裝設TLCD之最大頻譜反應值比較 65
圖4.22 Bh=8.4cm, orifice opening ψ=5.6cm, T=1.5sec, H=6cm,有無裝設TLCD之最大頻譜反應值比較 66
圖4.23 confining piping ψ=5.6 cm, orifice=1, T=1.5 sec, H=6cm,有無裝設TLCD之振幅降低率 67
圖4.24 Bh=8.4cm, orifice opening ψ=5.6cm, T=1.5sec, H=6cm,有無裝設TLCD之振幅降低率 68
圖4.25 confining piping ψ=5.6 cm, orifice=1, T=1.5sec, H=6cm,有無裝設TLCD之減振消能比 69
圖4.26 Bh=8.4cm, orifice opening ψ=5.6cm, T=1.5sec, H=6cm,有無裝設TLCD之減振消能比 69
圖4.27 confining piping ψ=5.6 cm, orifice=1, T=1.5 sec, H=6cm, Ld=55 ~70 cm, time=40~50sec,有無裝設TLCD之錨碇拉力比較 70
圖4.28 confining piping ψ=5.6 cm, orifice=1, T=1.5 sec, H=6cm, Ld=75 ~90 cm, time=40~50sec,有無裝設TLCD之錨碇拉力比較 70
圖4.29 confining piping ψ=5.6 cm, orifice=1, T=1.5 sec, H=6cm, Ld=95 ~110 cm, time=40~50sec,有無裝設TLCD之錨碇拉力比較 71
圖4.30 confining piping ψ=5.6 cm, orifice=1, T=1.5 sec, H=6cm, Ld=55 ~60 cm, time=0~50sec,有無裝設TLCD之錨碇拉力比較 71
圖4.31 confining piping ψ=5.6 cm, orifice=1, T=1.5 sec, H=6cm, Ld=65 ~70 cm, time=0~50sec,有無裝設TLCD之錨碇拉力比較 72
圖4.32 confining piping ψ=5.6 cm, orifice=1, T=1.5 sec, H=6cm, Ld=75 ~80 cm, time=0~50sec,有無裝設TLCD之錨碇拉力比較 72
圖4.33 confining piping ψ=5.6 cm, orifice=1, T=1.5 sec, H=6cm, Ld=85 ~90 cm, time=0~50sec,有無裝設TLCD之錨碇拉力比較 73
圖4.34 confining piping ψ=5.6 cm, orifice=1, T=1.5 sec, H=6cm, Ld=95 ~100 cm, time=0~50sec,有無裝設TLCD之錨碇拉力比較 73
圖4.35 confining piping ψ=5.6 cm, orifice=1, T=1.5 sec, H=6cm, Ld=105 ~110 cm, time=0~50sec,有無裝設TLCD之錨碇拉力比較 74
圖4.36 Bh=8.4cm, orifice opening ψ=5.6cm, T=1.5 sec, H=6cm, Ld=55 ~70cm, time=40~50sec,有無裝設TLCD之錨定拉力比較 74
圖4.37 Bh=8.4cm, orifice opening ψ=5.6cm, T=1.5 sec, H=6cm, Ld=75 ~90cm, time=40~50sec,有無裝設TLCD之錨定拉力比較 75
圖4.38 Bh=8.4cm, orifice opening ψ=5.6cm, T=1.5 sec, H=6cm, Ld=55 ~60cm, time=0~50sec,有無裝設TLCD之錨定拉力比較 75
圖4.39 Bh=8.4cm, orifice opening ψ=5.6cm, T=1.5 sec, H=6cm, Ld=65 ~70cm, time=0~50sec,有無裝設TLCD之錨定拉力比較 76
圖4.40 Bh=8.4cm, orifice opening ψ=5.6cm, T=1.5 sec, H=6cm, Ld=75 ~80cm, time=0~50sec,有無裝設TLCD之錨定拉力比較 76
圖4.41 Bh=8.4cm, orifice opening ψ=5.6cm, T=1.5 sec, H=6cm, Ld=85 ~90cm, time=0~50sec,有無裝設TLCD之錨定拉力比較 77
圖4.42 Bh=8.4cm,orifice opening ψ=5.6cm,Ld=90cm,T=1.2sec,H=9cm,有無裝設TLCD之位移與頻譜的比較 78
圖4.43 Bh=8.4cm,orifice opening ψ=5.6cm,Ld=90cm,T=1.3sec,H=9cm,有無裝設TLCD之位移與頻譜的比較 79
圖4.44 Bh=8.4cm,orifice opening ψ=5.6cm,Ld=90cm,T=1.4sec,H=9cm,有無裝設TLCD之位移與頻譜的比較 80
圖4.45 Bh=8.4cm,orifice opening ψ=5.6cm,Ld=90cm,T=1.5sec,H=9cm,有無裝設TLCD之位移與頻譜的比較 81
圖4.46 Bh=8.4cm,orifice opening ψ=5.6cm,Ld=90cm,T=1.6sec,H=9cm,有無裝設TLCD之位移與頻譜的比較 82
圖4.47 Bh=8.4cm,orifice opening ψ=5.6cm,Ld=90cm,T=1.7sec,H=9cm,有無裝設TLCD之位移與頻譜的比較 83
圖4.48 Bh=8.4cm,orifice opening ψ=5.6cm,Ld=110cm,T=1.4sec,H=9cm,有無裝設TLCD之位移與頻譜的比較 84
圖4.49 Bh=8.4cm,orifice opening ψ=5.6cm,Ld=110cm,T=1.5sec,H=9cm,有無裝設TLCD之位移與頻譜的比較 85
圖4.50 Bh=8.4cm,orifice opening ψ=5.6cm,Ld=110cm,T=1.6sec,H=9cm,有無裝設TLCD之位移與頻譜的比較 86
圖4.51 Bh=8.4cm,orifice opening ψ=5.6cm,Ld=110cm,T=1.7sec,H=9cm,有無裝設TLCD之位移與頻譜的比較 87
圖4.52 Bh=8.4cm,orifice opening ψ=5.6cm,Ld=110cm,T=1.8sec,H=9cm,有無裝設TLCD之位移與頻譜的比較 88
圖4.53 Bh=8.4cm,orifice opening ψ=5.6cm,Ld=110cm,T=1.9sec,H=9cm,有無裝設TLCD之位移與頻譜的比較 89
圖4.54 Bh=8.4cm,orifice opening ψ=5.6cm,Ld=110cm,T=2.0sec,H=9cm,有無裝設TLCD之位移與頻譜的比較 90
圖4.55 Bh=8.4cm,orifice opening ψ=5.6cm,Ld=90cm,H=9cm,T=1.2sec~1.7sec,有無裝設TLCD之最大反應 91
圖4.56 Bh=8.4cm,orifice opening ψ=5.6cm,Ld=110cm,H=9cm,T=1.4sec~2.0sec,有無裝設TLCD之最大反應 92
圖4.57 Bh=8.4cm,orifice opening ψ=5.6cm,Ld=90cm,H=9cm,T=1.2sec~1.7sec,有無裝設TLCD之振幅降低率 93
圖4.58 Bh=8.4cm,orifice opening ψ=5.6cm,Ld=110cm,H=9cm,T=1.4sec~2.0sec,有無裝設TLCD之振幅降低率 94
圖4.59 Bh=8.4cm,orifice opening ψ=5.6cm,Ld=90cm,H=9cm,T=1.2sec~1.7sec,有無裝設TLCD之減振消能比 95
圖4.60 Bh=8.4cm,orifice opening ψ=5.6cm,Ld=110cm,H=9cm,T=1.4sec~2.0sec,有無裝設TLCD之減振消能比 95
圖4.61 Bh=8.4cm,orifice opening ψ=5.6cm,Ld=90cm,H=9cm,T=1.2sec與T=1.3sec有無裝設TLCD之錨定拉力比較 96
圖4.62 Bh=8.4cm,orifice opening ψ=5.6cm,Ld=90cm,H=9cm,T=1.4sec與T=1.5sec有無裝設TLCD之錨定拉力比較 96
圖4.63 Bh=8.4cm,orifice opening ψ=5.6cm,Ld=90cm,H=9cm,T=1.6sec與T=1.7sec有無裝設TLCD之錨定拉力比較 97
圖4.64 Bh=8.4cm,orifice opening ψ=5.6cm,Ld=110cm,H=9cm,T=1.4sec與T=1.5sec有無裝設TLCD之錨定拉力比較 97
圖4.65 Bh=8.4cm,orifice opening ψ=5.6cm,Ld=110cm,H=9cm,T=1.6sec與T=1.7sec有無裝設TLCD之錨定拉力比較 98
圖4.66 Bh=8.4cm,orifice opening ψ=5.6cm,Ld=110cm,H=9cm,T=1.8sec與T=1.9sec有無裝設TLCD之錨定拉力比較 98
圖4.67 Bh=8.4cm,orifice opening ψ=5.6cm,Ld=110cm,H=9cm,T=2.0sec有無裝設TLCD之錨定拉力比較 99
圖4.68 confining piping Φ=5.6 cm,orifice=1,T=1.9 sec,H=6cm,Ld=110 cm,有無裝設TLCD之位移與頻譜的比較 100
圖4.69 confining piping Φ=5.6 cm,orifice=1,T=1.9 sec,H=9cm,Ld=110 cm,有無裝設TLCD之位移與頻譜的比較 101
圖4.70 Bh=8.4cm,orifice opening ψ=5.6cm,Ld=110cm,T=1.7sec,H=6cm,有無裝設TLCD之位移與頻譜的比較 102
圖4.71 Bh=8.4cm,orifice opening ψ=5.6cm,Ld=110cm,T=1.7sec,H=9cm,有無裝設TLCD之位移與頻譜的比較 103
圖4.72 confining piping Φ=5.6 cm,orifice=1,T=1.9 sec,Ld=110cm,波高不同下,有無裝設TLCD之振幅降低率 104
圖4.73 Bh=8.4cm, orifice opening ψ=5.6cm,T=1.7sec,Ld=110cm,波高不同下,有無裝設TLCD之振幅降低率 105
圖4.74 confining piping Φ=5.6 cm,orifice=1,T=1.9sec,Ld=110cm,波高不同下,有無裝設TLCD之減振消能比 106
圖4.75 Bh=8.4cm, orifice opening ψ=5.6cm,T=1.7sec,Ld=110cm,波高不同下,有無裝設TLCD之減振消能比 106
圖4.76 confining piping Φ=5.6 cm,orifice=1,T=1.9sec,Ld=110cm,波高不同下,有無裝設TLCD之錨定拉力比較 107
圖4.77 Bh=8.4cm, orifice opening ψ=5.6cm,T=1.7sec,Ld=110cm,波高不同下,有無裝設TLCD之錨定拉力比較 107
圖4.78 2組實驗波浪位移之改變示意圖(週期1.6秒,波高6公分) 108
圖4.79 2組實驗波浪頻譜反應圖(週期1.6秒,波高6公分) 108
圖4.80 Bh=8.4cm,orifice opening ψ=5.6cm,Ld=110cm,T=1.6sec, H=9cm,有無裝設TLCD之實驗值與理論值之比較 109
圖4.81 confining piping ψ=5.6 cm,orifice=1,Ld=110cm,T=1.9 sec,H=6cm,有無裝設TLCD之實驗值與理論值之比較 110
圖4.82 confining piping ψ=5.6 cm,orifice=1,T=1.5 sec,H=6cm,液柱長度改變下有無裝設TLCD之實驗值與理論值之最大頻譜反應比較 111
圖4.83 Bh=8.4cm,orifice opening ψ=5.6cm,T=1.5sec, H=6cm,液柱長度改變下有無裝設TLCD之實驗值與理論值之最大頻譜反應比較 112
圖4.84 Bh=8.4cm,orifice opening ψ=5.6cm,Ld=90cm,H=9cm,週期改變下有無裝設TLCD之實驗值與理論值之最大頻譜反應比較 113
圖4.85 Bh=8.4cm,orifice opening ψ=5.6cm,Ld=110cm,H=9cm,週期改變下有無裝設TLCD之實驗值與理論值之最大頻譜反應比較 114
圖A.1 不同形式之頻譜密度與自身關聯性函數
(a) Broad band (b) Narrow band 127
圖A.2 TLCD最佳化設計流程圖 128
圖B.1 TLCD內部液體示意圖 130
圖C.1 由波譜求波浪力頻譜流程圖 134
圖D.1 Bh=8.4cm,orifice opening ψ=5.6cm,Ld=90cm與Ld=80cm,H=9cm,T=1.0sec~1.9sec,有裝設TLCD之最大反應 137
圖D.2 Bh=8.4cm,orifice opening ψ=5.6cm,Ld=90cm與Ld=80cm,H=9cm,T=1.0sec~2.8sec,有裝設TLCD之最大反應 138


表目錄
表4.1 實驗參數表1 43
表4.2 實驗參數表2 44
表4.3 實驗參數表3 44
表D.1 實驗參數表 136


照片
照片3.1 電容式波高計 30
照片3.2 加速規裝設之相關位置 30
照片3.3 動態應變增幅器 31
照片3.4 黏貼於鋼片上之應變計 31
照片3.5 電橋箱 32
照片3.6 結構物附加TLCD之整體模型 32

符號說明
:阻尼器垂直斷面積/水平斷面積之比值
Av:阻尼器垂直斷面積
Ah:阻尼器水平斷面積
:阻尼器中液體密度
Bd:阻尼器水平段長度
:水頭損失係數
Le:阻尼器液柱有效長度
:TLCD管柱內液體流動之位移量
:TLCD管柱內液體流動之速度
:TLCD管柱內液體流動之加速度
:結構物水平方向之加速度
:主結構物之重量
R:主結構物之質量慣性矩
CX:結構物在水平方向之阻尼係數
CY:結構物在垂直方向之阻尼係數
CR:結構物在旋轉方向之阻尼係數
KX:結構物在水平方向之勁度係數
KY:結構物在垂直方向之勁度係數
KR:結構物在旋轉方向之勁度係數
Ld:阻尼器液柱總長度
Ms:外力彎矩(external moment)
Md:回復彎矩(restoring moment)
:預力纜繩對結構系統水平方向造成的等量勁度
:海水密度
g:重力加速度
:圓週率
b:垂直管柱之直徑
At:纜繩之断面積
Lt:纜繩長度
E:纜繩之楊式係數(Young’s modulus)
:平台重心至TLCD底部之距離
d:海水深度
d0:浮體初始吃水深
d1:施加纜繩張力後浮體吃水深
:結構物水平位移時,繫纜繩與垂直線之夾角
:結構物旋轉位移時,繫纜繩與垂直線之夾角
μ:纜繩勁度與結構物增加每單位深度所需浮力的比值
:平台之長度
:平台之寬度
Id:TLCD之慣性矩(moment of inertia)
:阻尼器管柱內液體有效質量
:TLCD等值阻尼係數
:TLCD自然頻率
:TLCD液面位移標準差
:TLCD液面速度標準差
:TLCD勁度係數
:TLCD有效寬長比
mt:阻尼器管柱內液體重量
:拖曳力係數(drag coefficient)
:慣性力係數(inertia coefficient)
:流體運動速度
:流體運動加速度
FT(t):作用在結構物上的總力
:流體在物體垂直方向上的速度
:流體在物體垂直方向上之加速度
:物體在該自由度上之速度
:物體在該自由度上之加速度
:附加質量係數(added mass coefficient)
FWX:波浪作用於圓柱浮筒兩垂直壁面上的水平力
V:體積
M*:附加質量之後結構物重量
Ma:附加重量
:波高
:周波數
:波長
:波浪作用力自身關聯函數
:流體水平速度自身關聯函數
:流體水平加速度自身關聯函數
:水表面上19.5公尺處之風速
:波浪頻譜
:波浪力頻譜
:流體水平速度標準差
:Phillip’s constant
:有效阻尼比
:外力作用到結構物重心距離
:結構物水平位移標準差
:結構物水平方向反應頻譜
:結構物垂直方向反應頻譜
:結構物旋轉方向反應頻譜
:TLCD液面位移複數頻率轉換函數
:結構水平方向複數頻率轉換函數
:結構垂直方向複數頻率轉換函數
:結構旋轉方向複數頻率轉換函數
:液柱內之液體位移頻譜
:液柱內之液體位移頻譜
:最佳化設計液柱長度
:最佳化設計TLCD阻尼係數
:TLCD與浮體結構物之質量比
:TLCD最佳阻尼比
:最佳設計水頭損失係數
:結構物自然頻率
參考文獻
Abdel-Rohman, M.(1984). “Optimal design of active TMD for building control”, Building and Environment, 19, 191-195.
Black, J. L. and Mei, C.C. (1969). “Scattering of surface waves by rectangular obstacles in water of finite depth”, Journal of Fluid Mechanics, 38, 499-511.
Black, J. L., Mei, C.C. and Bray, M. C. G. (1971). “Radiation and scattering of water waves by rigid bodies”, Journal of Fluid Mechanics, 46, 151-164.
Borgman, L. E. (1967). A statical theory for hydrodynamic forces on objects. Wave Research Project Report HEL-9-6, UC, Berkeley, CA.
Chaiseri P., Fujino Y., Pacheco B. M. and Sun L. M. (1989). “Interaction of tuned liquid damper(TLD)and structure:theory, experimental verification and application”, Structural Engineering and Earthquake Engineering, 6, 273-282.
Chang, C.C.(1999).“Mass dampers and their optimal designs for building vibration control”, Engineering Structures, 21, 454-463.
Chang, C. C., and Hsu, C. T.(1998). “Control performance of liquid column vibration absorbers”, Engineering Structures, 20, No. 7, 580-586.
Chang, C. C., Hsu, C. T., and Swei, S. M.(1998). “Control of buildings using single and multiple tuned liquid column dampers”, Structural Engineering and Mechanics, 6, 77-93.
Chen, Y. H., and Chao, C. C.(2000), “Optimal damping ratio of TLCDs”, Structural Engineering and Mechanics, Vol. 9, No. 3, 227-240.
Fujino, Y., Pacheco, B. M., Chaiseri, P. and Sun, L. M. (1988). “Parametric studies on tuned liquid damper(TLD)using circular containers by free-oscillation experiments”, Structural Engineering and Earthquake Engineering, 5, 381-391.
Fujion, Y. and Sun, L. M. and Pacheco B. M. (1992). “Tuned Liquid Damper(TLD)for suppressing horizontal motion of structures”, Journal of Engineering Mechanics, 118, 2017-2030.
Fujion, Y. and Sun, L. M. (1993). “Vibration control by multiple tuned liquid dampers(MTLDs)”, Journal of Structural Engineering, 119, 3482-3502.
Gao, H. and Kwok, K. C. S. (1997). “Optimization of tuned liquid column dampers”, Engineering Structures, 19, 476-486.
Garrison, C. J. (1974). “Dynamic response of floating bodies”, OTC, 2067, 365-378.
Hitchcock, P. A. Kwok, K. C. S., Watkins, R. D. and Samali, B. (1997). “Characteristics of liquid column vibration absorbers(LCVA)-Ⅰ ”, Engineering Structures, 19, 126-134.
Hitchcock, P. A. Kwok, K. C. S., Watkins, R. D. and Samali, B. (1997). “Characteristics of liquid column vibration absorbers(LCVA)-Ⅱ ”, Engineering Structures, 19, 135-144.
Isaacson, M. (1978). ”Nonlinear inertia forces on bodies”, Journal of the Waterways and Harbors Division, ASCE WW3, 213-227.
Jain A. K. (1997). “Nonlinear coupled response of offshore tension leg platform to regular wave forces”, Ocean Engineering, Vol.24, No.7, pp.577-592.
Kareem, A. Kline, S. (1995). “Performance of multiple mass dampers under random loadings”, Journal of Structural Control, 3-5, FP5-19-FP5-28.
Lee, C. P. and Lee, J, F. (1993). “Wave induced surge motion of a tension leg structure”, Ocean Engineering, 20, 171-186.
Lee, C. P. (1994). “Dragged surge motion of a Tension Leg Structure”, Ocean Engineering, 21, 377-328.
Lee, H. H., Wang. P. W. and Lee, C. P. (1999). “Dragged surge motion of a Tension Leg platforms and strained elastic tethers”, Ocean Engineering, 26, 575-594.
Lee, H. H., Wang, W. S. and Wang, P. W. (1999). “Dynamic motion of TLP with wave-large body and wave-small body interaction”, Proceeding of the Ninth International Offshore and Polar Engineering Conference, France, pp.309-314.
Luft, R. W. (1979). “Optimal tuned mass dampers for buildings”, Journal of Structural Division, ASCE, 105, 2766-2772.
Newman, J. N. (1977). Marine Hydrodynamics. MIT Press, Cambridge, MA.
Ni, Y.Q., Ying, Z.G., Wang, J.Y., Ko, J.M., and Spencer Jr, B.F.(2004).“Stochastic optimal control of wind-excited tall buildings using semi-active MR-TLCDs”, Probabilistic Engineering Mechanics. Vol. 19, Iss. 3, July 2004, P269-277
Penzine, J. and Tseng, S. (1978). “Three-dimensional dynamic analysis of fixed offshore platform”, In Numerical Methods in offshore Engineering, ed. O. C. Zienkiewicz, R. W. Lewis, and K. G. Stagg. John Wiley and Sons, New York, 221-243.
Peter, J. V. (1995). “Wind-induced response of tension leg platform:theory and experiment”, Journal of Structural Engineering, 121 ,651-663.
Pierson, W. J. and Moskowitz, L.(1964). “A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii”, Journal of Geophysical Research, 69, 5181-5190.
Sakai F., Takaeda S. and Tamaki T. (1989). “Tuned liquid column damper new type device for suppression of building vibrations”, Proceedings of International Conference on Highrise Buildings, 926-931.
Sarpkaya, T. and Isaacson, M. (1981). Mechanics of Wave Forces on Offshore Structures. Van Nostrand Reinhold, New York.
Shum, K. M., and Xu, Y. L.(2002). “Multiple-tuned liquid column dampers for torsional vibration control of structures: experimental investigation”, Earthquake Engineering and Structural Dynamics, 31, 977-991.
Wen, Y. K. (1980). ”Equivalent linearization for hysteretic systems under random excitation”, Journal of Applied Mechanics, 47, 150-154.
Xue, S. D., Ko, J. M., and Xu, Y. L.(2000). “Tuned liquid column damper for suppressing pitching motion of structures”, Engineering structures, 23, 1538-1551.
Yilmaz, O. and Incecik, A. (1996). “Hydrodynamic design of moored floating platforms”, Marine Structures, 9, 545-575.
毛壽彭,(1987).“水工模型試驗”,中國土木水利工程學會編
王佩文,(1999). “繫纜式浮體結構在波浪作用下之動力行為分析”, 中山大學海洋環境系碩士論文.
李任翔,(1999). “調諧液柱阻尼器於繫纜式浮體結構之應用”, 中山大學海洋環境系碩士論文.
翁庶航,(2000). “繫纜式浮體結構裝設調諧液柱阻尼器之動力分析及減振研究”, 中山大學海洋環境系碩士論文.
莊書賢,(2001).“改良式諧調液柱阻尼器對大型浮式結構物之動力減振研究(含理論及實驗)”, 中山大學海洋環境及工程學系碩士論文.
郭一羽,(2001). “海岸工程學”,文山書局,pp295-333.
郭金棟,(1995).“海洋工程”,中國土木水利工程學會,pp.70-72.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 葉政宗、翁上錦(2002)。高工CNC機械加工技術專業課程的設計。技術及職業教育雙月刊,64,52-57。
2. 楊國樞(1986)。家庭因素與子女行為:台灣研究的評析。中華心理學刊,28(1),7-28。
3. 盧富美(1992)。談合作學習及其教學流程。教師之友,33(4),3-8。
4. 劉秀嫚(1998)。合作學習的教學策略。公民訓育學報,7,285-294。
5. 鄒浮安(1994)。家庭社經地位與學業成就之關係:後設分析。教育研究資訊,2(3),38-47。
6. 黃立賢(1996)。青少年休閒教育面面觀。輔導通訊,46,13-17。
7. 陳昭儀(1992)。創造力的定義及研究。資優教育季刊,44,12-17。
8. 許崇憲(2002)。影響合作學習成效的因素:建構性活動、真實的學習情境與團體組成方式。國立政治大學學報,84,203-226。
9. 張芳全(1997)。教學的新典範─合作學習。國教月刊,44(3),7-16。
10. 張世平(1985)。高中生的教師期望、父母期望、自我期望與學業成就的關係。高雄師院學報,13,345-374。
11. 韋金龍(1996)。國內大專學生對合作學習英語教學活動的看法。教育研究資訊,4(6),13-26。
12. 洪榮昭、許書務(1998)。專題製作對科技創造力發展之影響分析—以多功能機器人製作為例。技術及職業教育學報,創刊號,169-181。
13. 邱美虹、林妙霙(1996)。合作學習對國三學生學習「地層紀錄地質事件」的影響。教育研究資訊,4(6),108-128。
14. 王春展(1997)。專家與生手間問題解決能力的差異及其在教學上的啟示。教育研究資訊,5(2),80-90。
15. 王千倖(1999)。「合作學習」和「問題導向學習」—培養教師及學生的科學創造力。教育資料與研究,28,31-39。