跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 00:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林偉盟
研究生(外文):Wei-Meng Lin
論文名稱:黏性流與水平振動圓柱的流場分析
論文名稱(外文):Viscous Flow Around Translating Cylinder
指導教授:陳邦富
指導教授(外文):Bang-Fuh Chen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋環境及工程學系研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:80
中文關鍵詞:黏性流體振動圓柱雷諾數數值方法
外文關鍵詞:viscous flownumerical methodtranslating cylinderReynolds number
相關次數:
  • 被引用被引用:0
  • 點閱點閱:123
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
對於流體通過固定圓柱或是移動圓柱的研究,在水利工程或是熱傳導是相當重要的。本論文利用Primitive-variable method討論流體通過圓柱體之流場研究,對於移動圓柱體的邊界,則是利用轉換式將其邊界固定,此固定邊界與時間無關。有限差分數值模擬與相關的演算系統與可視化α 和β 現象比對證明此方法是精確有效的。論文中,對於流線函數圖、圓柱表面的流場壓力分佈和分離點做討論,而對於移動的圓柱,亦將不同的振幅及頻率作比較,至於 Keule-gan-Carpenter 與流體作用在圓柱上的力之間的關係,在不同的雷諾數之下,也會一併加以論述。
Circular cylinders in cross-flow or the motion of circular cylinders in a fluid at rest are especially of interest in fields such as offshore and civil engineering or heat exchanger design in particular. A time-independent finite difference scheme, the basic equations are written in the form of the primitive-variable method, is developed to simulate the viscous flow across a streamwise oscillating circular cylinder. The mov-ing boundary of the oscillating cylinder is mapped to a fixed boundary and the boundary condition, therefore, becomes time independent. The finite difference ap-proximation and algorithm were first validated by the reported numerical simulation and flow visualization of the phenomenon α and phenomenon β for a flow across a fixed circular cylinder. Detailed streamline patterns developed in the process are then described and discussed. Surface pressure distribution and position of separation point versus phases of various stationary and oscillating stages are discussed. The flow be-haviors of various amplitudes of exciting velocity and frequency of moving cylinder are simulated and compared. The relation between Keulegan-Carpenter and the drag force on cylinder during cylinder oscillation was also calculated under various Reynolds number.
Abstract
中文摘要
Catalog
Catalog of Figures
Notation
Chapter 1 Introduction
1.1 Introduction
1.2 Literature Review
Chapter 2 Mathematical model
2.1 Portrayal of question
2.2 Equations of fluid motion
2.3 Boundary condition
2.4 Initial condition
2.5 Coordinate transformation
2.6 Dimensionless form
Chapter 3 Computational algorithm
3.1 Finite difference method
3.2 Discussion of advection term
3.3 The discussion of time step
3.4 Procedures of numerical computation
3.5 The computational flow chart
3.6 Influence of the grid systems
Chapter 4 Results and discussion
4.1 Pressure distribution in creep viscous flow at

4.2 Flow patterns near the surface of the fixed cylinder
4.3 Flow patterns near the surface of the moving cylinder
4.3.1 Results for Re=100 and KC=5
4.3.2 Results for high-Re-number and low-KC-number
Chapter 5 Conclusion
5.1 Conclusion
5.2 Suggestions
REFERENCE
Badr, H. M., Coutanceau, M., Dennis, S. C. R., and Menard, C. 1990 Unsteady flow past a rotating circular cylinder at Reynolds number 103 and 104. J. Fluid Mech., 220, 459-484.
Badr, H. M. Dennis, S. C. R. 1985. Time-dependent viscous flow past an impulsively started rotating and translating circular cylinder. J. Fluid Mech., 158, 447-488.
Bar-Lev, M., Yang, H.T. 1975. Infinite flow field over an impulsively started circular cylinder. J. Fluid Mech., 72, 625-647.
Blasius, H. 1908. Grenzchichten in Flussigkeiten mit Kleiner Reibug. Z. Angew. Math. Phys. NACA TM-1256 56, p. 1.
Bouard, R., and Coutanceau, M. 1980. The early stage of development of the wake behind an impulsively started cylinder for 40 Re . J. Fluid Mech., 101, 583-607.
Braza, M., P. Chassing, H. Haminh, 1986. Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder, J. Fluid Mech., 165, pp. 79~130.
Chang, C. C., and Chen, R. T. 1991. A numerical study of flow around an impulsively started circular cylinder by a deterministic vortex method. J. Fluid Mech., 233, 243-263.
Chang, C. C., and Chern, R. L. 1991. Vortex shedding from an impulsively started ro-tating and translating circular cylinder. J. Fluid Mech., 233, 265-298.
Chen, B. F. 1997. Nonlinear hydrodynamic pressures generated by a moving high-rise offshore cylinder Ocean Engng, 24(3), 201-216.
Chen, B. F. 1995. A complete three dimensional nonlinear hydrodynamic analysis of a vertical cylinder during earthquake, part I, a rigid cylinder motion, NSC report.
Christiansen, J. P. 1973. Vortex method for flow simulation. J. Computational Physics 13.
Chwang, A. T. 1978. Hydrodynamic pressures of sloping dams during earthquakes, part II, exact solution. J. Fluid Mech., 67, 343-348.
Chwang, A. T. 1983. Nonlinear hydrodynamic pressure on an accelerating plate. J. Physics Fluids 26, 383-387.
Collins, W. M., and Dennis, S. C. R. 1973a. The initial flow past an impulsively started circular cylinder. Q. J. Mech. Appl. Maths 26, 53-75.
Collins, W. M., and Dennis, S. C. R. 1973b. Flow past an impulsively started circular cylinder. J. Fluid Mech., 60, 105-127.
Coutanceau, M., and Menard, C. 1985. Influence of rotation on the near wake development behind an impulsively started circular cylinder. J. Fluid Mech., 158, 399-446.
Dennis, S. C. R., and Kocabiyik, S. 1991. An asymptotic matching condition for un-steady boundary-layer flows governed by the Navier-Stokes equations. IMA J. Appl. Maths 47, 91-98.
Filler, J. R., Marston, and P. L. and Mih, W. C., 1991. Response of the Shear Layers Separating from a circular cylinder to small-amplitude rotational oscillations, J. Fluid Mech., 231, pp. 481~499.
Hung, T. K., and Chen, B. F. 1990. Nonlinear hydrodynamic pressures on dams. J. Ergng. Mech., ASCE 116, 1372-1391.
Hwang, Robert R., Te-Pu Chiang, and Mau-Tse Chiao, 1986. Time-dependent incom-pressible viscous flow past a circular cylinder, Journal of the Chinese.
Isaacson, M. 1978. Wave runup around large circular cylinder; J. Waterways Port. Coast. and Ocean Div, ASCE, 104, 69-79.
Jain P. C., and Rao K. S., 1969. Numerical solution of unsteady viscous incompressi-ble circular cylinder, Phys. Fluids Suppl. (II)12, 57.
Jordan, and Stanley K. Jacob E. Fromm, 1973. Oscillatory drag, lift, and torque on a circular cylinder in a uniform flow, Phys. Fluids 1972, 15, No. 3, pp. 371~377.
Kovasznay, and L. S. G., 1949. Hot-wire investagation of the wake behind cylinder at low Reynolds number, Proc. R. Soc. Lond. A 198, 174.
Koumoutsakos, and P., Leonard, A. 1993. Improved boundary integral method for in-viscid boundary condition applications. AIAA journal. 31, 401-404.
Koumoutsakos, and P., Leonard, A., Pepin, F. 1994. Boundary conditions for viscous vortex methods. J. of Computational Physics 113, 52.
Koumoutsakos, and P., Leonard, A. 1995. High-resolution simulations of the flow around an impulsively started cylinder using vortex methods. J. Fluid Mech., 296, 1-38.
Lienhart 1997. Low-Reynolds-number flow around an oscillating circular cylinder at low Keulegan-Carpenter numbers. J. Fluid Mech., 360, 249-271.
Lin, C., Peter D., and Lee S., 1976. Numerical method for separated flow solutions around a Circular Cylinder, AIAA journal. 14, pp.900~907.
Lu, X.-Y., J. Sato, 1996. A numerical study of flow past a rotationally oscillating cir-cular cylinder, J. Fluids and Structures. 10, pp. 829~849.
Mahfouz, F. M., and H. M. Badr, 2000. Flow structure in the wake of a rotation oscil-lating cylinder, J. Fluids Engineering. 122, pp. 290~301.
Pantom, and Renold L. 1996. Imcompressible Flow, pp. 388 ~ 389
Payne, and R. B. 1958. Calculations of unsteady viscous flow past a circular cylinder. J. Fluid Mech., 4, 81-86.
Prandtl, and W. 1925. The magnus effect and windpowered ships. Wissenschaften 13, 93-108.
Proudman, I., & J. R. A. Pearson, 1957. Expansions at small Reynolds number for the flow past a sphere and a circular cylinder, J. Fluid Mech., 2, 237 ~ 262.
Schaefer, John W., and Salamon Eskinazi, 1958. An analysis of the vortex street gen-erated in a viscous fluid, J. Fluid Mech., 6, 241~260.
Smith, P. A., Stansby, and P. K. 1988. Impulsively started flow around a circular cyl-inder by the vortex method. J. Fluid Mech., 194, 45-77.
Ta Phuoc Loc 1980. Numerical analysis of unsteady secondary vortices generated by an impulsively started circular cylinder. J. Fluid Mech., 100, 111-128.
Ta Phuoc Loc, Bouard, R. 1985. Numerical solution of the early stage of the unsteady viscous flow around a circular cylinder : a comparison with experimental visuali-zation and measurement. J. Fluid Mech., 160, 93-117.
Teissie-Solier, M., 1931. These Doctorat-es-Science, Universite de Toulouse.
Thoman, D. C., and Szewczyk A. A., 1969, Time dependent viscous flow over a circular cylinder, Phys. Fluids Suppl., 2, 79~86.
Tokumaru, P. T. and Dimotakis, P. E., 1991. Rotary oscillation control of a cylinder wake, J. Fluid Mech., 224, pp.77~90.
Tritton, D. J., 1971. A note on vortex street behind circular cylinders at low Reynolds numbers, J. Fluid Mech., 45, pp. 203-208.
Wang, C.-Y. 1968 On high-frequency oscillatory viscous flows. J. Fluid Mesh. 32, 55-68.
Wang, X., and Dalton, C. 1991. Numerical solution for impulsively started and decelerated viscous flow past a circular cylinder. Intl J. Numer. Method Fluids, 12, 383-400.
Williamson, C. H. K. 1985 Sinusoidal flow relative to circular cylinders. J. Fluid Mesh. 155, 141-17
Wu, J. C. 1976. Numerical boundary conditions for viscous flow problems. AIAA Journal. 14, 1042-4049.
Wu, J. M., Mo, J. D., and Vakili, A. D., 1989. On the wake of a circular cylinder with rotational oscillations, AIAA-89-1024.
Wu, J. Z., Wu, X., Ma, H., Wu, and J. M. 1995. Dynamic vorticity condition : theory and numerical implementation. Intl J. Numer. Method In Fluids
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top