# 臺灣博碩士論文加值系統

(3.231.230.177) 您好！臺灣時間：2021/08/04 00:15

:::

### 詳目顯示

:

• 被引用:0
• 點閱:123
• 評分:
• 下載:23
• 書目收藏:0
 對於流體通過固定圓柱或是移動圓柱的研究，在水利工程或是熱傳導是相當重要的。本論文利用Primitive-variable method討論流體通過圓柱體之流場研究，對於移動圓柱體的邊界，則是利用轉換式將其邊界固定，此固定邊界與時間無關。有限差分數值模擬與相關的演算系統與可視化α 和β 現象比對證明此方法是精確有效的。論文中，對於流線函數圖、圓柱表面的流場壓力分佈和分離點做討論，而對於移動的圓柱，亦將不同的振幅及頻率作比較，至於 Keule-gan-Carpenter 與流體作用在圓柱上的力之間的關係，在不同的雷諾數之下，也會一併加以論述。
 Circular cylinders in cross-flow or the motion of circular cylinders in a fluid at rest are especially of interest in fields such as offshore and civil engineering or heat exchanger design in particular. A time-independent finite difference scheme, the basic equations are written in the form of the primitive-variable method, is developed to simulate the viscous flow across a streamwise oscillating circular cylinder. The mov-ing boundary of the oscillating cylinder is mapped to a fixed boundary and the boundary condition, therefore, becomes time independent. The finite difference ap-proximation and algorithm were first validated by the reported numerical simulation and flow visualization of the phenomenon α and phenomenon β for a flow across a fixed circular cylinder. Detailed streamline patterns developed in the process are then described and discussed. Surface pressure distribution and position of separation point versus phases of various stationary and oscillating stages are discussed. The flow be-haviors of various amplitudes of exciting velocity and frequency of moving cylinder are simulated and compared. The relation between Keulegan-Carpenter and the drag force on cylinder during cylinder oscillation was also calculated under various Reynolds number.
 Abstract 中文摘要 Catalog Catalog of Figures NotationChapter 1 Introduction 1.1 Introduction 1.2 Literature ReviewChapter 2 Mathematical model 2.1 Portrayal of question 2.2 Equations of fluid motion 2.3 Boundary condition2.4 Initial condition2.5 Coordinate transformation 2.6 Dimensionless formChapter 3 Computational algorithm 3.1 Finite difference method 3.2 Discussion of advection term 3.3 The discussion of time step 3.4 Procedures of numerical computation 3.5 The computational flow chart 3.6 Influence of the grid systemsChapter 4 Results and discussion 4.1 Pressure distribution in creep viscous flow at 4.2 Flow patterns near the surface of the fixed cylinder 4.3 Flow patterns near the surface of the moving cylinder 4.3.1 Results for Re=100 and KC=5 4.3.2 Results for high-Re-number and low-KC-numberChapter 5 Conclusion 5.1 Conclusion 5.2 Suggestions REFERENCE
 Badr, H. M., Coutanceau, M., Dennis, S. C. R., and Menard, C. 1990 Unsteady flow past a rotating circular cylinder at Reynolds number 103 and 104. J. Fluid Mech., 220, 459-484.Badr, H. M. Dennis, S. C. R. 1985. Time-dependent viscous flow past an impulsively started rotating and translating circular cylinder. J. Fluid Mech., 158, 447-488.Bar-Lev, M., Yang, H.T. 1975. Infinite flow field over an impulsively started circular cylinder. J. Fluid Mech., 72, 625-647.Blasius, H. 1908. Grenzchichten in Flussigkeiten mit Kleiner Reibug. Z. Angew. Math. Phys. NACA TM-1256 56, p. 1.Bouard, R., and Coutanceau, M. 1980. The early stage of development of the wake behind an impulsively started cylinder for 40 Re . J. Fluid Mech., 101, 583-607.Braza, M., P. Chassing, H. Haminh, 1986. Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder, J. Fluid Mech., 165, pp. 79~130.Chang, C. C., and Chen, R. T. 1991. A numerical study of flow around an impulsively started circular cylinder by a deterministic vortex method. J. Fluid Mech., 233, 243-263.Chang, C. C., and Chern, R. L. 1991. Vortex shedding from an impulsively started ro-tating and translating circular cylinder. J. Fluid Mech., 233, 265-298.Chen, B. F. 1997. Nonlinear hydrodynamic pressures generated by a moving high-rise offshore cylinder Ocean Engng, 24(3), 201-216.Chen, B. F. 1995. A complete three dimensional nonlinear hydrodynamic analysis of a vertical cylinder during earthquake, part I, a rigid cylinder motion, NSC report.Christiansen, J. P. 1973. Vortex method for flow simulation. J. Computational Physics 13.Chwang, A. T. 1978. Hydrodynamic pressures of sloping dams during earthquakes, part II, exact solution. J. Fluid Mech., 67, 343-348.Chwang, A. T. 1983. Nonlinear hydrodynamic pressure on an accelerating plate. J. Physics Fluids 26, 383-387.Collins, W. M., and Dennis, S. C. R. 1973a. The initial flow past an impulsively started circular cylinder. Q. J. Mech. Appl. Maths 26, 53-75.Collins, W. M., and Dennis, S. C. R. 1973b. Flow past an impulsively started circular cylinder. J. Fluid Mech., 60, 105-127.Coutanceau, M., and Menard, C. 1985. Influence of rotation on the near wake development behind an impulsively started circular cylinder. J. Fluid Mech., 158, 399-446.Dennis, S. C. R., and Kocabiyik, S. 1991. An asymptotic matching condition for un-steady boundary-layer flows governed by the Navier-Stokes equations. IMA J. Appl. Maths 47, 91-98.Filler, J. R., Marston, and P. L. and Mih, W. C., 1991. Response of the Shear Layers Separating from a circular cylinder to small-amplitude rotational oscillations, J. Fluid Mech., 231, pp. 481~499.Hung, T. K., and Chen, B. F. 1990. Nonlinear hydrodynamic pressures on dams. J. Ergng. Mech., ASCE 116, 1372-1391.Hwang, Robert R., Te-Pu Chiang, and Mau-Tse Chiao, 1986. Time-dependent incom-pressible viscous flow past a circular cylinder, Journal of the Chinese.Isaacson, M. 1978. Wave runup around large circular cylinder; J. Waterways Port. Coast. and Ocean Div, ASCE, 104, 69-79.Jain P. C., and Rao K. S., 1969. Numerical solution of unsteady viscous incompressi-ble circular cylinder, Phys. Fluids Suppl. (II)12, 57.Jordan, and Stanley K. Jacob E. Fromm, 1973. Oscillatory drag, lift, and torque on a circular cylinder in a uniform flow, Phys. Fluids 1972, 15, No. 3, pp. 371~377.Kovasznay, and L. S. G., 1949. Hot-wire investagation of the wake behind cylinder at low Reynolds number, Proc. R. Soc. Lond. A 198, 174.Koumoutsakos, and P., Leonard, A. 1993. Improved boundary integral method for in-viscid boundary condition applications. AIAA journal. 31, 401-404.Koumoutsakos, and P., Leonard, A., Pepin, F. 1994. Boundary conditions for viscous vortex methods. J. of Computational Physics 113, 52.Koumoutsakos, and P., Leonard, A. 1995. High-resolution simulations of the flow around an impulsively started cylinder using vortex methods. J. Fluid Mech., 296, 1-38.Lienhart 1997. Low-Reynolds-number flow around an oscillating circular cylinder at low Keulegan-Carpenter numbers. J. Fluid Mech., 360, 249-271.Lin, C., Peter D., and Lee S., 1976. Numerical method for separated flow solutions around a Circular Cylinder, AIAA journal. 14, pp.900~907.Lu, X.-Y., J. Sato, 1996. A numerical study of flow past a rotationally oscillating cir-cular cylinder, J. Fluids and Structures. 10, pp. 829~849.Mahfouz, F. M., and H. M. Badr, 2000. Flow structure in the wake of a rotation oscil-lating cylinder, J. Fluids Engineering. 122, pp. 290~301.Pantom, and Renold L. 1996. Imcompressible Flow, pp. 388 ~ 389Payne, and R. B. 1958. Calculations of unsteady viscous flow past a circular cylinder. J. Fluid Mech., 4, 81-86.Prandtl, and W. 1925. The magnus effect and windpowered ships. Wissenschaften 13, 93-108.Proudman, I., & J. R. A. Pearson, 1957. Expansions at small Reynolds number for the flow past a sphere and a circular cylinder, J. Fluid Mech., 2, 237 ~ 262.Schaefer, John W., and Salamon Eskinazi, 1958. An analysis of the vortex street gen-erated in a viscous fluid, J. Fluid Mech., 6, 241~260.Smith, P. A., Stansby, and P. K. 1988. Impulsively started flow around a circular cyl-inder by the vortex method. J. Fluid Mech., 194, 45-77.Ta Phuoc Loc 1980. Numerical analysis of unsteady secondary vortices generated by an impulsively started circular cylinder. J. Fluid Mech., 100, 111-128.Ta Phuoc Loc, Bouard, R. 1985. Numerical solution of the early stage of the unsteady viscous flow around a circular cylinder : a comparison with experimental visuali-zation and measurement. J. Fluid Mech., 160, 93-117.Teissie-Solier, M., 1931. These Doctorat-es-Science, Universite de Toulouse.Thoman, D. C., and Szewczyk A. A., 1969, Time dependent viscous flow over a circular cylinder, Phys. Fluids Suppl., 2, 79~86.Tokumaru, P. T. and Dimotakis, P. E., 1991. Rotary oscillation control of a cylinder wake, J. Fluid Mech., 224, pp.77~90.Tritton, D. J., 1971. A note on vortex street behind circular cylinders at low Reynolds numbers, J. Fluid Mech., 45, pp. 203-208.Wang, C.-Y. 1968 On high-frequency oscillatory viscous flows. J. Fluid Mesh. 32, 55-68.Wang, X., and Dalton, C. 1991. Numerical solution for impulsively started and decelerated viscous flow past a circular cylinder. Intl J. Numer. Method Fluids, 12, 383-400.Williamson, C. H. K. 1985 Sinusoidal flow relative to circular cylinders. J. Fluid Mesh. 155, 141-17Wu, J. C. 1976. Numerical boundary conditions for viscous flow problems. AIAA Journal. 14, 1042-4049.Wu, J. M., Mo, J. D., and Vakili, A. D., 1989. On the wake of a circular cylinder with rotational oscillations, AIAA-89-1024.Wu, J. Z., Wu, X., Ma, H., Wu, and J. M. 1995. Dynamic vorticity condition : theory and numerical implementation. Intl J. Numer. Method In Fluids
 電子全文
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 黏性流體與運動圓柱之互制反應分析 2 底部具加熱模塊之水平通道之熱對流研究 3 用物體座標解不可壓縮黏性流體低雷諾數之流場

 1 6.郭仁安、周昌民。2002。利用紋理辨識技術建立影像蒐尋引擎。清雲學報22（1）：19-28。 2 3.郭立穎、陳世銘、張文宏。1998。洋香瓜糖度檢測之研究（一）影像紋理分析法。農業機械學刊7（1）：75-86。 3 13.蘇堃綺、鄭心婷、洪梅珠、郭寶錚。2001。評估以不同統計方法建立白米粉末直鏈澱粉含量的近紅外線光譜模型。農林學報50（2）：33-52。 4 12.蘇堃綺、郭寶錚、洪梅珠。2001。近紅外線光譜分析中逐步回歸與主成分回歸的比較。中華農學會報2（3）：226-240。 5 1.周建忠、夏榮生。2001。小波轉換於SAR影像資料萃取之研究。航測及遙測學刊6（2）：71-86。 6 11.謝清祿、鄭聖夫、林達德。1997。應用影像紋理分析及類神經網路辨識甘藍種苗之生長階段。農業機械學刊6（2）：1-13。

 1 黏性流體與運動圓柱之互制反應分析 2 圓柱橫向振動對昇力之影響機理 3 微飛行器低雷諾數薄翼之氣動力特性分析 4 自然耦合圓柱流之大尺度渦流模擬 5 砂粒受水平振動行為之研究 6 水平振動圓柱上之流場及熱傳特性 7 均勻流場橫向振動圓柱對有效昇力之影響機理 8 二維垂直振動槽顆粒物質分層效應與顆粒密度、振動振幅與振動頻率之關係 9 強制振動圓柱流場結構之研究 10 無閥式微泵之微擴流器/噴嘴流場分析及性能研究 11 黏滯流體中振動圓柱致流現象分析 12 通過橫向振動圓柱流場之數值模擬 13 直接數值模擬紊流流經波形流道之流場分析 14 交流型電漿顯示器三維數值模擬 15 孤立內波於變動地形之數值模擬

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室