# 臺灣博碩士論文加值系統

(18.206.76.226) 您好！臺灣時間：2021/07/30 23:19

:::

### 詳目顯示

:

• 被引用:0
• 點閱:240
• 評分:
• 下載:0
• 書目收藏:0
 本文主要以Lee and Shie (2003) 的文章為基石,來推導出Augmented Dickey-Fuller (ADF Test) 單根檢定,在一般化的分數單根資料下 (例如: ARFIMA(p,1+d,q) (|d|<1/2; p,q 為正整數時) 的t檢定統計量的極限分配,進而探討其檢定力隨著所選定延滯期數增加而產生變化的原因;在文章的最後,我們提供了一些圖表來說明與蒙地卡羅模擬的證據來佐證我們的推導結論
 In this paper, we derive the asymptotic distribution of the Augmented Dickey-Fuller t Test statistics, t_{ADF}, against a generalized fractional integrated process (for example: ARFIMA(p,1+d,q) ,|d|<1/2,and p, q be positive integer) by using the propositions of Lee and Shie (2003).Then we discuss why the power decreases with the increasing lags in the same and large enough sample size T when d is unequal to 0. We also get that the estimator of the disturbance''s variance, S^2, has slightly increasing bias with increasing k. Finally, we support the conclusion by the Monte Carlo experiments.
 Catalog:1 Introduction p.72 Model Setting and Denotations p.9 2.1 Population Process p.9 2.1.1 The Binomial Expansion of Fractional Diference p.10 2.1.2 Assumptions For t p.10 2.1.3 Data Generating Process p.10 2.2 Regression Model p.11 2.3 Denotations p.11 2.4 Estimation p.133 The Functional Central Limit Theorem p.144 The Propositions of Integrated Process p.155 Lemmas p.166 Theorems and Discussions p.17 6.1 Theorems p.17 6.2 Discussions p.18 6.2.1 Estimators p.18 6.2.2 Test Statistics p.19 6.3 Figures p.20 6.4 Monte Carlo Evidences p. 237 Conclusions p.288 Appendix p.29 8.1 Proof of Lemma 1-9 p.29 8.2 Proof of Theorem 1-4 p.38*References p.44
 [1]Anderson, T.W., 1951, Estimating Linear Restrictions onRegression Coefficient for Multivariate NormalDistributions.Annals of Mathematical Statistics 22, 327-351.[2]Anderson, T.W., 1971, The Statistical Analysis of TimeSeries, Wiley, New York.[3]Avram, F. and M.S. Taqqu, 1987, Noncentral limittheorems and appell polynomials. Annals of Probability15, 767-775.[4]Baillie, R.T., 1996, Long memory processes andfractional integration in econometrics. Journal ofEconometrics 73, 5-59.[5]Beran, J., 1994, Statistics for long-memory processes.Chapman Hall, New York.[6]Box, G.E.P., and G.M. Jenkins, 1976, Time SeriesAnalysis : Forecasting and Control, 2nd. edn., Holden-Day, San Francisco.[7]Chung, C.F., 1994, A note on calculating theautocovariances of the fractionally integrated ARMAmodels. Economics Letters 45, 293-297.[8]Chung, C.F., 2002. Sample means, sampleautocovariances, and linear regression of stationarymultivariate long memory processes. Econometric Theory18, 51-78.[9]Davidson, J., 1994, Stochastic limit theory, Oxford:Oxford University Press.[10]Davidson, J. and R.M. De Jong, 2000, The functionalcentral limit theorem and weak convergence tostochastic integrals II: Fractionally IntegratedProcesses, Econometric Theory 16, 643-666.[11]Davidson, J., 2002, Establishing conditions for thefunctional central limit theorem in nonlinear andsemiparametric time series processes. Journal ofEconometrics 106, 243-269.[12]Davydov, Y.A., 1970. The invariance principle forstationary processes. Theory of Probability and ItsApplications 15, 487-489.[13]Dickey, D.A. and W.A. Fuller, 1979, Distribution ofthe estimator for autoregressive time series with aunit root, Journal of the American StatisticalAssociation 74, 427-431.[14]Diebold, F.X. and G.D. Rudebusch, 1991, On the powerof Dickey-Fuller tests against fractional alternatives.Economics Letters 35, 155-160.[15]Dittmann, I., 2000, Residual-based tests forfractional cointegration:\$;;\$ A Monte Carlo study.Journal of Time Series Analysis 21, 6, 615-647.[16]Dolado, J., J. Gonzalo, and L. Mayoral, 2002, Afractional Dickey-Fuller test for unit root.Econometrica 70, 5, 1963-2006. Economics Letters 35,155-160.[17]Geweke, J.F. and S. Porter-Hudak, 1983, The estimationand application of long memory time series models.Journal of Time Series Analysis 4, 221-238.[18]Granger, C.W.J. and R. Joyeux, 1980, An introductionto long-memory time series models and fractionaldifferencing. Journal of Time Series Analysis 1, 15-39.[19]Hassler, U. and J. Wolters, 1994, On the power of unitroot tests against fractional alternatives. EconomicsLetters 45, 1-5.[20]Helson, J. and Y. Sarason, 1967, Past and future.Mathematica Scandanavia 21, 5-16.[21]Hurst , H.E., 1951, Long-term storage capacity ofreserviors,Transactions of the American Society ofCivil Engineers 116, 770-779.[22]Hurst , H.E., 1956, Methods of using long term storagein reservoirs, Proceedings of the Institute of CivilEngineer 1, 519-543.[23]Hurst , H.E., 1957, A suggested statistical model ofsome time series that occur in nature. Nature 180, 494.[24]Kwiatkowski, D., P.C.B. Phillips, P. Schmidt, and ShinY., 1992, Testing the null hypothesis of stationarityagainst the alternative of a unit root :How sure are we the economic time series have a unitroot ? . Journal of Econometrics 54, 159-178.[25]Kramer, W., 1998, Fractional integration and theaugmented Dickey-Fuller Test. Economics Letters 61,269-272.[26]Lee, C.N. and F.S. Shie, 2003, Fractional Integrationand Phillips-Perron Test. Working paper, National SunYat-Sen University.[27]Lee, D., and P. Schmidt, 1996, On the power of theKPSS test of stationarity against fractionally-integrated alternatives. Journal of Econometrics 73,285-302.[28]Mandelbrot, B.B. , 1972, Statistical Methodlogy fornon periodic cycles : From the covariance to R/Sanalysis. Annals of Economic and Social Measurement 1,259-290.[29]Mandelbrot, B.B. and J. Wallis, 1968, Noah, Joseph andoperational hydrology. Water Resources Research 4, 909-918.[30]McLeod, A.I. and K.W. Hipel, 1978, Preservation of therescaled adjusted range :A reassessment of the Hurstphenomenon. Water Resources Research 14, 491-508.[31]Marinucci, D., and P.M. Robinson, 1999, Alternativeforms of fractional Brownian motion. Journal ofStatistical Planning and Inference 80, 111-122.[32]Mielniczuk, J., 1997, Long and short-range dependentsums of infinite-order moving averages and regressionestimation. Acta Sci. Math. (Szeged) 63, 301-316.[33]Nelson, C.R. and C.I. Plosser, 1982, Trends and randomwalks in macroeconomic time series : Some evidence andimplications. Journal of Monetary Economics 10, 139-162.[34]Newey, W. and K. West, 1987, A simple positive semi-definite, heteroscedasticity and autocorrelationconsistent covariance matrix. Econometrica 55, 703-708.[35]Perron, P. and S. Ng, 1996, Useful modifications tosome unit root tests with dependent errors and theirlocal asymptotic properties. Reviews of EconomicStudies 63, 435-463.[36]Phillips, P.C.B., 1987, Time series regression with aunit root. Econometrica 55, 277-301.[37]Phillips, P.C.B. and S. Ouliaris, 1990, Asymptoticproperties of residual based tests for cointegration.Econometrica, 58, 1, 165-193.[38]Phillips, P.C.B. and P. Perron, 1988, Testing for aunit root in time series regression. Biometrika, 75,2, 335-346.[39]Said, E.S. and David A. Dickey, Testing for unit rootin autoregressive-moving average models of unknownorder. Biometrika 71, 3, 599-607.[40]Schwert, G.W., 1987, Effects of model specification ontests for unit roots in macroeconomic data. Journal ofMonetary Economics 20, 73-103.[41]Sowell, F.B., 1990, The fractional unit rootdistribution. Econometrica 58, 2, 495-505.[42]Stout, W.F., 1974, Almost sure convergence. AcademicPress.[43]Tanaka, K., 1999, The nonstationary fractional unitroot. Econometric Theory 15, 549-582.[44]Wang, Q., Y. Lin, and C. Gulati, 2003, Asymptotics forgeneral fractionally integrated processes withapplications to unit root tests. Econometric Theory,19, 143-164.[45]White, P., 1951, Hypothesis testing in time seriesanalysis. Almquist and Wiksells, Uppsala.[46]White, P., 1956, Variation of yield variance with plotsize. Biometrika 43, 337-343.[47]White, H., 2001, Asymptotic theory foreconometricians. Academic Press.
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 根據多樣組數據評估製程品質績效

 1 李子純 (1983) 磷素肥料在土壤中的變化聚積及其被旱作利用之研究。中華農業研究，32:172-184。

 1 金價、油價、通貨膨脹與貨幣供給量之關聯性分析 2 美國股市價量關係-非線性平滑轉換誤差修正模型實證研究 3 股價與成交量因果關係之研究－台灣股市的實証 4 台灣、美國、日本半導體產業股價連動關係 5 近單根模型之最小平方估計量的預測誤差 6 鄰苯二甲酸丁苄酯對尼古丁型乙醯膽鹼受器神經保護作用之影響 7 應用倒傳遞類神經網路於短中長期匯率預測研究 8 Some R-functions for Penalized Fourier Regression 9 運用向量自我迴歸模型與最大交叉相關預測時間序列 10 松山國際機場客貨運量預測之研究 11 歐元區利率、歐元區MSCI股價指數與歐元區匯率關係於TVAR模型之運用 12 跳躍風險與波動傳遞效果-原油、不動產、黃金與匯率之實證研究 13 不同市場趨勢中雜訊對避險績效之影響 14 台灣地區股價指數、利率、匯率與消費者物價指數相關性之研究 15 GDP、能源消耗與外來直接投資之因果關係-以東南亞五國為例

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室