跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/08/04 08:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭卉君
研究生(外文):Hui-chun Kuo
論文名稱:利用多重代理人系統解決協同供應鏈之分散式限制滿足問題
論文名稱(外文):Solving the Distributed Constraint Satisfaction Problem for Cooperative Supply Chains Using Multi-agent Systems
指導教授:林福仁林福仁引用關係
指導教授(外文):Fu-ren Lin
學位類別:碩士
校院名稱:國立中山大學
系所名稱:資訊管理學系研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:81
中文關鍵詞:供應鏈管理基因演算法分散式限制滿足問題協商機制多重代理人系統分散式排程問題
外文關鍵詞:generic algorithmsupply chain managementautomated negotiationmulti-agent systemsdistributed scheduling problemdistributed constraint satisfaction problem
相關次數:
  • 被引用被引用:2
  • 點閱點閱:150
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
面對全球化的競爭環境,企業已經無法經由單打獨鬥來提升競爭優勢,必須透過與其他供應鏈成員間彼此分享資訊、合作協調,來提升整體供應鏈的效能。在這樣一個分散式的供應鏈結構中,企業之間如何合作無間、快速協調來完成顧客的訂單是一個重要的議題。本論文在設計一個快速、彈性的方法來解決供應鏈上排程衝突問題。

在現實環境中,由於涉及到公司的商業機密及需要高額的資訊收集成本,因此,利用集中式的方法來解決分散式排程問題是不實際也不可行的。另外,分散限制滿足方法只著重在尋找一個可執行的訂單排程。因此,我們提出一個以多重代理人為基礎的分散式協同機制,此方法利用協商機制及基因演算法來解決供應鏈分散式排程問題。本論文以模具產業的供應鏈為例,以及設計了數個實驗去分析這三個方法的效率及供應鏈效能。實驗結果顯示利用分散式協同機制來解決供應鏈上排程衝突問題是可行的。
Facing global and dynamic competition environment, companies have to collaborate with other companies instead of struggle alone to optimize performance of supply chain. In a distributed supply chain structure, it is an important issue for companies to coordinate seamlessly to effectively fulfill customer orders. In this thesis, we seek to propose a fast and flexible method to solve the order fulfillment scheduling conflicts among partners in a supply chain.

Due to the risk of exposing trade secrets and the cost of gathering information, the centralized constraint satisfaction mechanism is infeasible to handle distributed scheduling problem in real world environment. Moreover, the distributed constraints satisfaction model just focuses on finding a globally executable order fulfillment schedule. Therefore, we propose an agent-based distributed coordination mechanism that integrates negotiation with generic algorithm. We chose the mold manufacturing industry as an example and conducted experiments to evaluate the performance of the proposed mechanism and to compare with other benchmark methods proposed by researchers prior to this study. The experimental results indicate that the distributed coordination mechanism we proposed is a feasible approach to solve the order fulfillment scheduling conflicts in outsourcing activities in a supply chain.
CHAPTER 1 INTRODUCTION 1
1.1 RESEARCH MOTIVATION 1
1.2 RESEARCH OBJECTIVES 2
1.3 THESIS ORGANIZATION 3
CHAPTER 2 LITERATURE REVIEW 5
2.1 SUPPLY CHAIN MANAGEMENT 5
2.1.1 The Definition Supply Chain and Supply Chain Management 5
2.1.2 Main Problems in Supply Chain and the Causes of Formation for Supply Chain Problems 5
2.1.3 Techniques for Information Sharing 6
2.2 MULTI-AGENT SYSTEM 8
2.2.1 The Definition and Characteristics of Agents 8
2.2.2 The Definition and Characteristics of Multi-Agent System 9
2.2.3 Applications of Agent Technology 9
2.2.4 Multi-Agent System Platform: JADE 10
2.3 DISTRIBUTED CONSTRAINT SATISFACTION PROBLEM 10
2.3.1 Constraint Satisfaction Problem 11
2.3.2 Distributed Constraint Satisfaction Problem 11
2.3.3 Algorithms for Solving Distributed Constraint Satisfaction Problem 12
2.3.4 Distributed Scheduling Problem Is Formulated as Distributed Constraint Satisfaction Problem 15
2.4 AUTOMATED NEGOTIATION 17
2.4.1 The Definition and Process of Negotiation 17
2.4.2 Negotiation Mechanisms 18
2.5 GENETIC ALGORITHM 20
CHAPTER 3 RESEARCH FRAMEWORK 27
3.1 DISTRIBUTED CONSTRAINT SATISFACTION MODEL 28
3.1.1 Task Representations: TÆMS Task Models 30
3.1.2 Constraints Satisfaction Solution 31
3.2 DISTRIBUTED COORDINATION MECHANISM INTEGRATING NEGOTIATION WITH GENETIC ALGORITHM 32
3.2.1 One-to-Many Multi-Attribute Negotiation 32
3.2.2 Multi-Attribute Proposal/Counter Proposal Evaluation 39
3.2.3 Acceptability Criteria of Multi-Attribute Proposal/Counter Proposal 39
3.2.4 Multi-Attribute Counter Proposal/New Proposal Generation 40
3.3 THE BACKGROUND AND CHARACTERISTICS OF MOLD INDUSTRY 47
CHAPTER 4 EXPERIMENTAL DESIGN 48
4.1 EXPERIMENTAL SETTINGS 48
4.2 EXPERIMENTS 52
4.2.1 Experiment A 53
4.2.2 Experiment B 56
4.2.3 Experiment C 56
CHAPTER 5 EXPERIMENTAL RESULTS AND DISCUSSIONS 58
5.1 EFFECTS OF DISTRIBUTED CONSTRAINT SATISFACTION AND DISTRIBUTED COORDINATION METHODS ON SUPPLY CHAIN PERFORMANCE 58
5.1.1 Experiment A-1 58
5.1.2 Experiment A-2 60
5.1.3 Experiment A-3 61
5.1.4 Experiment A-4 62
5.1.5 Comparison with experiment A-1, A-2, A-3 and A-4 64
5.1.6 Summary 67
5.2 EFFICIENCY OF DISTRIBUTED CONSTRAINT SATISFACTION AND DISTRIBUTED COORDINATION METHODS 68
5.3 PERFORMANCE AND EFFICIENCY OF DISTRIBUTED COORDINATION MECHANISM WITH DIFFERENT COMPOSITIONS OF BARGAINING POWER 73
CHAPTER 6 CONCLUSIONS AND FUTURE WORKS 75
6.1 CONCLUSIONS 75
6.2 FUTURE WORKS 76
REFERENCES 75
Chen, Y., Peng, Y., Finin, T., Labrou, Y., Cost, R., Chu, B., Sun, R., & Willhelm, R. (1999). A negotiation-based Multi-agent System for Supply Chain Management. ACM Autonomous Agents workshop on Agent-based Decision-support for Managing the Internet-enabled Supply-chain.
Coen, M. A., & Kreuwels. (1990). Electronic data interchange. IEEE, 214-224.
Coit, D. W., & Smith, A. E. (1996, September). Penalty Guided Genetic Search for Reliability Design Optimization. Computers & Industrial Engineering, 30(4), 895-904.
Fang, H. L. (1994). Genetic Algorithm in timetabling and scheduling (Doctoral dissertation, Department of Artificial Intelligent, University of Edinburgh, 1994).
Faratin, P., Sierra, C., & Jennings, N. R. (1998). Negotiation Decision Functions for Autonomous Agents. Int. Journal of Robotics and Autonomous Systems, 24, 159-182.
Fox, M. S., Barbuceanu, M., & Teigen, R. (2000). Agent-Oriented Supply-Chain Management. International Journal of Flexible Manufacturing Systems, 12, 165-188.
Greffenstette, J. J. (1986). Optimization of Control Parameters for Genetic Algorithms. IEEE Transactions on Systems, Man, and Cybernetics, 16(1), 122-128.
Holland, J. H. (1975). Adaptive in Natural and Artificial Systems. Ann Arbor, MI:University of Michigan Press.
Jennings, N. R., Sycara, K., & Wooldridge, M. (1998). A Roadmap of Agent Research and Development. Autonomous agents and Multi-agent Systems, 1(1) 7-38.
Kowalczyk, R., & Bui, V. (2000). On Constraint-based Reasoning in e-Negotiation Agents. In Agent Mediated Electronic Commerce III, 31-46.
Lee, H. L., Padmanabhan, V., & Whang, S. (1997). The Bullwhip Effect In Supply Chains. Sloan Management Review, 38(3), 93-102.
Lin, F.-r., Tan, G. W., & Shaw, M. J. (1998, January). Modeling Supply-Chain Networks by a Multi-Agent System. Proceedings of the Thirty-First Hawaii International Conference on System Sciences (HICSS-31), 5, 105-114.
Lin, F.-r., Lin, S.-m., & Hsueh, P.-w. (2004). Dynamic Business Process Formation by Integrating Simulated and Physical Agent Systems. Proceedings of the 37th Annual Hawaii International Conference on System Sciences.
Lin, Y.-u. (2003). Building Multi-agent System to Solve Distributed Constraint Satisfaction Problems for Supply Chain Management (Master Degree Dissertation, National Sun Yat-sen University, 2003).
Maes, P. (1995). Artificial Life Meets Entertainment: Life Like Autonomous Agents. Communications of the ACM, 38(11), 108-114.
Oliver, J. R. (1997). A Machine Learning Approach to Automated Negotiation and Prospects for Electronic Commerce. Journal of Management Information Systems, 13(3), 83-112.
Opera, M. (2000, September). An Adaptive Negotiation Model for Agent-Based Electronic Commerce. Studies in Informatics and Control, 11(3).
Ping, L., Yongtong, H., Yuhong, Y., Danian, Z., & Shiyuan, Y. (1997). Using Counter-Proposal to Optimize Genetic Algorithm Based Cooperative Negotiation. Proceedings of the 1997 IEEE International Conference on Intelligent Processing Systems, 891-895.
Rahwan, I., Kowalczyk, R., & Pham, Ha. (2002). Intelligent Agents for Automated One-to-Many e-Commerce Negotiation. Proceedings of the 25th Australasian Computer Science Conference (ACSC-02), 197-204.
Tan, G. W., & Shaw, M. J. (1998). Applying Component Technology to Improve Global Supply Chain Network Management. Proceedings of the Nineteenth Annual International Conference on Information Systems, 296-301.
Wagner, T., & Lesser, V. (2000, March). Design-to-Criteria Scheduling: Real-Time Agent Control. Proceedings of AAAI 2000 Spring Symposium on Real-Time Autonomous Systems, 89-96.
Wellman, M. A., & Gemmill, D. D. (1995). A genetic algorithm approach to optimization of asynchronous automatic assembly systems. International Journal of Flexible Manufacturing Systems, 7, 27-46.
Winoto, P., McCalla, C., & Vassileva, J. (2002). An Extended Alternating-Offers Bargaining Protocol for Automated Negotiation in Multi-Agent Systems. AAAI/IAAI, 969-970.
Wooldridge, M., & Jennings, N. R. (1994). Agent Theories, Architectures, and Languages: A Survey. In Intelligent Agents - Agent Theories, Architectures, and Languages (ATAL-94), 890, 1-32.
Yeh, C.-h. (1996). A literature review on the components improvement of genetic algorithms. Taiwan Water Conservancy, 44(1), 92-105.
Yokoo, M., Ishida, T., Durfee, E. H., & Kazuhiro, K. (1992). Distributed Constraint Satisfaction for Formalizing Distributed Problem Solving. 12th International Conference on Distributed Computing Systems (ICDCS-92), 614-621.
Yokoo, M., & Hirayama, K. (1998). Distributed Constraint Satisfaction Algorithm for Complex Local Problems. Proceedings of the Third International Conference on Multiagent Systems (ICMAS-98), 372-379.
Yokoo, M., & Hirayama, K. (2000). Algorithms for Distributed Constraint Satisfaction: A Review. Autonomous Agents and Multi-Agent Systems Journal, 3(2), 198-212.
Yung, S. K., Yang, C. C., Lau, A. S. M., & Yen, J. (2000). Applying Multi-Agent Technology to Supply Chain Management. Journal of Electronic Commerce Research, 1(4).
Zhang, X., Lesser, V., & Podorozhny, R. (under review). Multi-Dimensional, MultiStep Negotiation for Task Allocation in a Cooperative System. Submitted to the Journal of Autonomous Agents and MultiAgent Systems.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top