跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 08:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:白益忠
研究生(外文):Yi-chung Pai
論文名稱:知識分享環境中知識文件間語意關係辨識之研究
論文名稱(外文):Semantic Relationship Annotation for Knowledge Documents in Knowledge Sharing Environments
指導教授:魏志平魏志平引用關係
指導教授(外文):Chih-ping Wei
學位類別:碩士
校院名稱:國立中山大學
系所名稱:資訊管理學系研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:57
中文關鍵詞:文件分類知識分享回應-語意關係文類分類
外文關鍵詞:Genre ClassificationText CategorizationReply-semantic RelationshipKnowledge Sharing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:126
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
  傳統的線上知識分享環境存在著大量的知識文件或討論文件。因此,一項組織知識分享的重要議題是當面對大量的知識文件如何做有效率的管理。而我們認為在知識文件間可能存在著外顯或內隱的回應-語意關係(reply-semantic relationships)。然而,這樣的回應-語意關係一旦被發現或辨認出來,藉由這樣一個更先進且具有語意擷取能力的機制,將大大提升企業知識存取的能力。在本研究中,我們針對回應式的文件,提出一組回應-語意關係的初步類別架構,且發展一項知識文件間語意關係辨識技術(SEmantic Enrichment between Knowledge documents, SEEK),以自動化辨識回應式文件間的語意關係。
  本研究以內容式文件分類技術(content-based text categorization)以及文類分類技術(genre classification)為基礎,我們設計並評估不同特徵組合而成的模式、包括:關鍵字特徵(keyword features)、POS統計值特徵(POS statistics features)、及給定/新發現資訊特徵(given/new information features, GI/NI)的組合。根據實證評估的結果顯示,我們所提出的SEEK技術可以達到一個不錯的分類精準度。此外,以關鍵字與GI/NI的組合做為特徵值用於本技術,於Answer/Comment語意關係分類工作有最佳的分類準確率。另一方面,只使用關鍵字做為特徵值用於本技術,於Explanation/Instruction語意關係分類工作表現最好。
A typical online knowledge-sharing environment would generate vast amount of formal knowledge elements or interactions that generally available as textual documents. Thus, an effective management of the ever-increasing volume of online knowledge documents is essential to organizational knowledge sharing. Reply-semantic relationships between knowledge documents may exist either explicitly or implicitly. Such reply-semantic relationships between knowledge documents, once discovered or identified, would facilitate subsequent knowledge access by providing a novel and more semantic retrieval mechanism. In this study, we propose a preliminary taxonomy of reply-semantic relationships for documents organized in reply-replied structures and develop a SEmantic Enrichment between Knowledge documents (SEEK) technique for automatically annotating reply-semantic relationships between reply-pair documents. Based on the content-based text categorization techniques and genre classification techniques, we propose and evaluate different feature-set models, combinations of keyword features, POS statistics features, and/or given/new information (GI/NI) features. Our empirical evaluation results show that the proposed SEEK technique can achieve a satisfactory classification accuracy. Furthermore, use of keyword and GI/NI features by the proposed SEEK technique resulted in the best classification accuracy for the Answer/Comment classification task. On the other hand, the use of keyword features only can best differentiate Explanation and Instruction relationships.
CHAPTER 1 INTRODUCTION 1
1.1 Background and Research Motivation 1
1.2 Research Objective 3
1.3 Organization of the Thesis 4
CHAPTER 2 LITERATURE REVIEW 6
2.1 Schemes for Communicative Actions 6
2.1.1 Speech Act Schemes 6
2.1.2 Classification Scheme for Relationships between Messages in A Reply-Replied Structure 11
2.2 Text Categorization 12
2.3 Genre Classification 16
CHAPTER 3 DESIGN OF SEMANTIC ENRICHMENT FOR KNOWLEDGE DOCUMENTS (SEEK) TECHNIQUE 21
3.1 A Taxonomy of Reply-semantic Relationships in SEEK 21
3.2 Overall Process of SEmantic Enrichment for Knowledge documents (SEEK) Technique 25
3.2.1 Cue Feature Extraction and Selection Phases 26
3.2.2 Reply-pair Representation Phase 30
3.2.3 Induction Phase 30
CHAPTER 4 EMPIRICAL EVALUATION FOR SEEK TECHNIQUE 31
4.1 Evaluation Design 31
4.1.1 Data Collection 31
4.1.2 Evaluation Criteria 33
4.1.3 Evaluation Procedure 33
4.2 Evaluation Results 33
4.2.1 Tuning Number of Keywords for Model 1 to Model 4 34
4.2.2 Comparative Evaluation of SEEK 36
CHAPTER 5 CONCLUSION AND FUTURE RESEARCH DIRECTIONS 39
APPENDIX A: PENN TREEBANK TAGS 42
REFERENCES 45
[ABS99] Agrawal, R., Bayardo, R., and Srikant, R., “Athena: Mining-based Interactive Management of Text Databases,” Proceedings of the 6th International Conference on Extending Databases Technology, July 1999, pp.365-379.
[AC97] Allen, J.F. and Core, M.G., “Draft of DAMSL: Dialog Act Markup in Several Layers,” draft manual, Dept. of Computer Science, Univ. of Rochester, Rochester, NY, March 1997.
[ADW94] Apte, C., Damerau, F., and Weiss, S., “Automated Learning of Decision Rules for Text Categorization,” ACM Transactions on Information Systems, Vol. 12, No. 3, 1994, pp.233-251.
[B92] Brill, E., “A Simple Rule-Based Part of Speech Tagger,” Proceedings of the 3rd Conference on Applied Natural Language Processing (ACL), Trento, Italy, 1992.
[B94] Brill, E., “Some Advances in Rule-Based Part of Speech Tagging,” Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI-94), Seattle, WA, 1994.
[BM98]Baker, L. D. and Mccallum, A. K., “Distributional Clustering of Words for Text Classification,” Proceedings of the 21st International ACM SIGIR Conference on Research and Development in Information Retrieval, 1998, pp.96-103.
[CI96] Carletta, J., Isard, A., Isard, S., Kowtko, J., and Doherty-Sneddon, G., “HCRC Dialogue Structure Coding Manual,” Technical Report HCRC/TR-82, 1996.
[CS96]Cohen, W. W. and Singer, Y., “Context-sensitive Learning Methods for Text Categorization,” Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Zurich, Switzerland, August 1996, pp.307-315.
[DDB98]Davenport, T. H., D. W. DeLong, and M. C. Beers, “Successful Knowledge Management Projects,” Sloan Management Review, Winter 1998, pp.43-57.
[DP98]Davenport, T. H. and L. Prusak, “Working Knowledge: How Organizations Manager What They Know,” Harvard Business School Press, Boston, MA, 1998.
[DPH98]Dumais, S., Platt, J., Heckerman, D., and Sahami, M., “Inductive Learning Algorithms and Representations for Text Categorization,” Proceedings of the 1998 ACM 7th International Conference on Information and Knowledge Management (CIKM ‘98), 1998, pp.148-155.
[DVM01] Dewdney N., VanEss-Dykema C., and MacMillan R., “The Form is the Substance: Classification of Genres in Text,” Workshop on HLT and KM, ACL, 2001.
[E03]Eppler, M. J., “Making Knowledge Visible through Knowledge Maps: Concepts, Elements, Cases” Chapter 10 in Handbook of Knowledge Management, Vol. 1, C. W. Holsapple (Ed.), Germany, 2003, pp.189-205.
[FAM96]Ferguson, G., Allen, J., and Miller, B. “TRAINS-95: Towards a Mixed-initiative Planning Assistant,” Proceedings of the 3rd International Conference on AI Planning Systems (AIPS-96), 1996.
[FK03]Finn, A. and Kushmerick, N., “Learning to Classify Documents According to Genre,” IJCAI-2003 Workshop on Computational Approaches to Text Style and Synthesis (Acapulco), 2003.
[H85]Halliday, M., “An Introduction to Functional Grammar.” London: Edward Amold, 1985.
[H99]Hickins, M., “Xerox Shares Its Knowledge,” Management Review, Vol. 8, No. 8, 1999.
[IT95]Iwayama, M. and Tokunaga, T., “Cluster-based Text Categorization: A Comparison of Category Search Strategies,” Proceedings of the 18th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ‘95), Seattle, WA, July 1995, pp.273-281.
[KB98]Karlgren J., Bretan I., Dewe J.,Hallberg A., and Wolkert N., “Iterative information retrieval using fast clustering and usage-specic genres.” In Proc Eighth DELOS Workshop on User Interfaces in Digital Libraries, Stockholm, Sweden, October 1998, pp.85-92.
[KC94]Karlgren J., Cutting D., “Recognizing Text Genres with Simple Metrics Using Discriminant Analysis”, Proc. of COLING94, Kyoto, 1994.
[KNS97]Kessler B., Nunberg G., Schutze H., “Automatic Detection of Text Genre” ACL''97, July 1997, pp.32-38.
[LA98]Larsson, S., “Coding Schemas for Dialogue Moves,” (available: http://www.ling.gu.se/~sl), 1998.
[LC03]Liebowitz, J. and Y. Chen, “Knowledge Sharing Proficiencies: The Key to Knowledge Management,” Chapter 21 in Handbook of Knowledge Management, Vol. 1, C. W. Holsapple (Ed.), Germany, 2003, pp.409-424.
[LC96]Larkey, L. and Croft, W., “Combining Classifiers in Text Categorization,” Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ‘96), Zurich, Switzerland, August 1996, pp.289-297.
[LR94] Lewis, D. and Ringuette, M., “A Comparison of Two Learning Algorithms for Text Categorization,” Proceedings of Symposium on Document Analysis and Information Retrieval, 1994.
[MLW92] Masand, B., Linoff, G., and Waltz, D., “Classifying News Stories Using Memory Based Reasoning,” Proceedings of the 15th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’92), 1992, pp.59-64.
[MN98] McCallun, A. K. and Nigam, K., “A Comparison of Event Models for Naïve Bayes Text Classification,” Proceedings of AAAI-98 Workshop on Learning for Text Categorization, 1998.
[MOI02]Matsuo Y., Ohsawa Y., and Ishizuka M., “Mining Messages in an Electronic Message Board by Repetition of Words,” The Second International Workshop on Chance Discovery, Pacific Rim International Conference on AI (PRICAI), Tokyo, 2002.
[NGL97] Ng, H. T., Goh, W. B., and Low, K. L., “Feature Selection, Perceptron Learning, and A Usability Case Study for Text Categorization,” Proceedings of Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ‘97), 1997, pp.67-73.
[P00]Preece, J., Online Communities: Designing for Sociability and Usability, John Wiley, Chichester, UK, 2000.
[PLV02]Pang B., Lee L., and Vaithyanathan S., “Thumbs up? Sentiment Classification using Machine Learning Techniques.” Proceedings of EMNLP, 2002.
[Q93]Quinlan, J. R., C4.5: Programs for Machine Learning, Morgan Kaufmann, San Mateo, CA, 1993.
[RHW86] Rumelhart, D. E., Hinton, G. E., and Williams, R. J., “Learning Internal Representations by Error Propagation,” Parallel Distributed Processing: Explorations in the Microstructures of Cognition, Vol. 1, Rumelhart, D. E. and McClelland, J. L. (Eds.), MIT Press, Cambridge, MA, 1986, pp.318-362.
[RM01]Rauber, A. and Müller-Kögler, A., “Integrating automatic genre analysis into digital libraries,” Proceedings of the First ACM IEEE Joint Conference on Digital Libraries (JCDL’01), 2001, pp.1-10.
[RM95] Reithinger, N. and Maier, E., “Utilizing Statistical Dialogue Act Processing in Verbmobil,” Proceedings of the 33rd Annual Meeting of the Association for Computational Linguistics (ACL-95), 1995.
[S75] Searle, J. R., “Language, Mind, and Knowledge, Minnesota Studies in the Philosophy of Science,” in A Taxonomy of Illocutionary Acts, University of Minnesota Press, 1975.
[SFT94] Seligman, M., Fais, L., and Tomokiyo, M., “A Bilingual Set of Communicative Act Labels for Spontaneous Dialogues.“ Technical Report TR-IT-0081, ATR Interpreting Telecommunications Laboratories, Kyoto, Japan, 1994.
[SRC00]Stolcke, A., Ries, K., Coccaro, N., Shriberg, E., Bates, R., Jurafsky, D., Taylor, P., Martin, R., Van Ess-Dykema, C., and Meteer, M., “Dialogue Act Modeling for Automatic Tagging and Recognition of Conversational Speech,” Computational Linguistics, Vol. 26, No. 3, 2000, pp.339-373.
[T02]Turney and Peter D. “Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews.” In Proceedings 40th Annual Meeting of the Association for Computational Linguistics (ACL''02), Philadelphia, Pennsylvania, 2002, pp.417-424.
[TH92] Traum, D. R., and Hinkelman E. A., “Conversation Acts in Task-oriented Spoken Dialogue,” Computational Intelligence, Vol. 8, No.3, 1992, pp.575-599.
[WAD99] Weiss, S. M., Apte, C., Damerau, F. J., Johnson, D. E., Oles, F. J., Goetz, T., and Hampp, T., “Maximizing Text-Mining Performance,” IEEE Intelligent Systems, Vol. 14, No. 4, July/August 1999, pp.63-69.
[WHD02]Wei, C., Hu, P., and Dong, Y. X., “Managing Document Categories in E-Commerce Environments: An Evolution-Based Approach,” European Journal of Information Systems, Vol. 11, No. 3, September 2002, pp.208-222.
[WKF02]Wu, T., Khan, F. M., Fisher, T. A., Shuler, L. A., and Pottenger, W. M., “Posting Act Tagging Using Transformation-Based Learning,” Proceedings of the Workshop on Foundations of Data Mining and Discovery, IEEE International Conference on Data Mining (ICDM''02), December 2002.
[WPW95] Wiener, W., Pedersen, J. O., and Weigend, A. S., “A Neural Network Approach to Topic Spotting,” Proceedings of the 4th Annual Symposium on Document Analysis and Information Retrieval (SDAIR ’95), Las Vegas, NV, 1995, pp.317-332.
[X97] Xu, J., “Solving the Word Mismatch Problem Through Automatic Text Analysis,” Unpublished Ph.D Thesis, University of Massachusetts at Amherst, 1997.
[Y94]Yang, Y., “Expert Network: Effective and Efficient Learning from Human Decisions in Text Categorization and Retrieval,” Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ‘94), Dublin, Ireland, July 1994, pp.13-22.
[YC94] Yang, Y. and Chute, C. G., “An Example-based Mapping Method for Text Categorization and Retrieval,” ACM Transactions on Information Systems, Vol. 12, No. 3, 1994, pp.252-277.
[YC94]Yang, Y. and Chute, C. G., “An Expample-based Mapping Method for Text Categorization and Retrieval,” ACM Transactions on Information Systems, Vol. 12, No. 3, 1994, pp.252-277.
[YL99]Yang, Y. and Liu, X., “A Re-examination of Text Categorization methods,” Proceedings of SIGIR ’99: 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 1999, pp.42-49.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top