跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/05 13:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾永瑞
研究生(外文):Yung-jui Chung
論文名稱:資料探勘技術於新產品目標客戶預測模式:以電信業為例
論文名稱(外文):Target Market Prediction for New Mobile Telecommunications Products and Services: A Data Mining Approach
指導教授:魏志平魏志平引用關係
指導教授(外文):Chih-Ping Wei
學位類別:碩士
校院名稱:國立中山大學
系所名稱:資訊管理學系研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:53
中文關鍵詞:資料庫行銷目標行銷新產品行銷電信資料探勘
外文關鍵詞:Database MarketingTarget MarketingNew Product MarketingTelecommunications Data Mining
相關次數:
  • 被引用被引用:1
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:7
我國電信市場隨著號碼可攜性政策的開放,PHS及第三代無線通訊服務業者的加入,電信市場的競爭情勢更可說已進入白熱化的的階段。眾多同業的競爭及新一代通訊業務的開放,已迫使行動通信業者面臨顧客流失與營收降低的壓力。在此激烈競爭的電信市場環境下,各業者不斷推出各種新的電信產品及服務,冀望於領先同業競爭者,率先推出市場以獲取最大的利益。而大量新產品或服務的推出雖有助於強化企業與顧客間的關係,然而其所耗費的行銷費用卻也伴隨著新產品與服務瀕繁推出而急速上升。
在新產品必須迅速推出市場以獲得最大利益的需求下,企業為求降低行銷成本並快速反應市場,多由行銷負責人透過簡單隨機抽樣調查(Simple Random Sampling)或依據個人的經驗來判斷潛在客戶群。此種行銷方法容易因人員的流動而未能傳承成功經驗或因隨機抽樣調查時的樣本數不足而過度預測潛在的客戶群,因而於產品行銷時造成許多浪費性的支出,或是對非潛在顧客形成困擾造成行銷疲乏。
本研究認為消費者對於新產品的需求或接受度,事實上已反應在其過去對於產品的消費選擇當中。若新產品與某現有產品之間有相同的消費客群,或是相似的產品屬性,則該現有產品顧客群購買新產品的接受度應相對較高。本研究運用上述觀念提出兩種新產品潛在顧客預測模式建構方式,其分別為「消費客群導向的新產品潛在顧客預測模式」與「產品屬性導向的新產品潛在顧客預測模式」,以解決現有行銷模式成本增加、過度預測及回應時間過長等問題。實證結果顯示,本研究所提出的兩種新產品潛在顧客預測模式皆能較專家預測方式與試銷預測模式更有效預測新產品潛在顧客,因此在改善現有的行銷方式上深具實務運用的價值。
As the deregulation of the mobile number portability (MNP) and the emergence of such new technologies and services as PHS and 3G, the mobile telecommunications industry in Taiwan becomes highly competitive than ever. Under such competition, customer churning and profit declining have become of great concerns to mobile service providers. In response, most of providers continuously develop and introduce new value-added products and services. Frequent value-add products and services might strengthen customers’ loyalty (i.e., decrease customer churning) and improve gross profits, but the corresponding marketing cost would also be increased dramatically.

To lower the marketing cost and respond to market quickly, marketing staff typically adopts a pilot test based on the simple random sampling (SRS) approach or relies on marketing experts for defining potential target market for a new value-add product or service. The former approach requires a large number of respondents in the pilot test, while the latter is knowledge intensive and may suffer from unavailability of knowledge due to turnover of experienced marketing experts.

In this thesis, we propose a novel approach for efficient and effective search for the target market for a new product/service. Specifically, we consider the target market of a new product or service being that of the most similar existing product/service, where the similarity of products/services can be defined based on either their product/service attributes or the similarity between the pilot test of the new product/service and the customer-base of an existing product/service. Accordingly, we propose two target market prediction models for new product/service, i.e., “customer-based target market prediction model” and “product-attribute-based target market prediction model.” Our empirical results show that the proposed prediction models are more effective in predicting potential customers for new products/services than traditional approaches.
目 錄

致謝辭 II
摘 要 III
Abstract IV
目 錄 V
圖目錄 VII
表目錄 VIII
第一章 、緒論 1
第一節、 研究背景 1
第二節、 研究動機與目的 2
第三節、 論文架構 3
第二章 、文獻探討 5
第一節、 新產品的開發與行銷 5
第二節、 資料探勘技術探討 7
第一項 、分類分析(Classification Analysis) 7
第二項 、群集分析(Clustering Analysis) 7
第三項 、聯結法則分析(Association Rule Analysis) 8
第四項 、次序相關分析(Sequential Pattern Analysis) 8
第五項 、鏈結分析(Link Analysis) 9
第六項 、時間序列相似性分析(Time-series Similarity Analysis) 9
第三節、 資料探勘技術應用於行銷上的相關研究 9
第四節、 資料探勘技術應用於電信業的相關研究 11
第三章 、新產品潛在顧客預測模式 15
第一節、 消費客群導向的新產品潛在顧客預測模式 15
第二節、 產品屬性導向的新產品潛在顧客預測模式 19
第四章 、實證評估 22
第一節、 實證評估設計 22
4.1.1 資料來源 22
4.1.2 評估準則 24
4.1.3 評估比較基準 25
1、 專家預估方式 25
2、 試銷預測模式 26
第二節、 實證評估結果分析與低樣本數敏感度分析 27
4.2.1 實證評估與結果分析 27
4.2.2 低樣本數敏感度評估分析 30
第五章 、結 論 32
第一節、 研究結論 32
第二節、 研究貢獻與限制 33
第三節、 未來研究方向 33
參考文獻 35
附 錄 41


圖目錄
圖2-1 決策樹圖例 14
圖3-1消費客群導向的新產品潛在顧客預測模式 16
圖3-2產品屬性導向的新產品潛在顧客預測模式 19
圖4-1 累計獲益曲線 25
圖4-2 試銷預測模式 27
圖4-3 各預測模型在八項產品上的累計獲益曲線(樣本數5萬) 29
圖4-4 各預測模型在八項產品上的累計獲益曲線(樣本數5千) 31

表目錄
表3-1 顧客特徵資料項目 17
表3-2 顧客交易資料項目 17
表3-3電信服務產品屬性類別 20
表4-1 用以進行實證評估的產品說明 23
表 4-2 八項實證產品與部分產品屬性相關性資料表 24
表4-3 資深行銷人員評估產品目標客群特徵 26
附錄一、八項實證產品與完整產品屬性相關性資料表 41
參考文獻
中文文獻
[邱義堂00]邱義堂, 「通信資料庫之資料探勘:客戶流失預測之研究」 ,國立中山大學資訊管理所碩士論文,2000。
[張勳騰99]張勳騰, 「通信資料庫之資料探勘:目標行銷之應用」 ,國立中山大學資訊管理所碩士論文,1999。
[許哲銘99]許哲銘, 「時間序列型態之知識探索」 ,國立中山大學資訊管理管理所碩士論文,1999。
[IBM97]IBM, 「資料探挖-找出隱藏在資料庫中的寶藏」 ,資訊傳真周刊,256期,1997年8月,pp.24。
[龔良明98]龔良明, 「衍生性群集分析方法之探訂:理論與應用」 ,國立中山大學資訊管理管理所碩士論文,1998。
[張德民99]張德民, 「資料探勘:從搜尋金星火山到偵察考試作弊」 ,資訊傳真週刊,336期,1999年3月,pp.10。
[葉怡成98]葉怡成, 「類神經網路模式應用與實作」 ,儒林圖書有限公司,1998年1月。
[遠擎01]遠擎金融暨服務事業顧問群, 「顧客關係管理深度解析」 ,ARC。
[齊玉美02]齊玉美, 「不對稱分類分析之研究」 ,國立中山大學資訊管理所碩士論文,2002。
[魏志平99]魏志平,董和昇, 「資料管理與分析」 ,電子商務:理論與實務
[林龍樹00]林龍樹, 「用戶流失率評估方法與流程介紹」 ,中華電信研究所2001年4月。
[陳文華99A] 陳文華, 「架構資料倉儲的注意事項」 ,資訊與電腦,1999 年 3 月,pp.94-99。
[陳文華99B] 陳文華, 「應用資料倉儲系統建立CRM」 ,資訊與電腦,1999 年 5 月,pp.122-127。
英文文獻
[APH98]Anand, S., Patrick, A., Hughes, J. and Bell, D., “A Data Mining Methodology for Cross-sales,” Knowledge-Based Systems, Vol. 10, No. 7, 1998, pp. 449-461.
[A00]Ananyan, S. ,”Data Mining for Direct Marketing “ DM Review Magazine January 2000
[AS94] Agrawal, R. and Srikant, R., “Fast Algorithms for Mining Association
Rules,” Proceedings of 1994 International Conference on Very Large
Data Bases, Santiago, Chile, Sep, 1994, pp. 487-499.
[AS95] Agrawal, R. and Srikant, R., “Mining Sequential Patterns: Generalizations and Performance Improvements,” Research Report RJ 9994, IBM Almaden Research Center, San Jose, California, Dec, 1995.
[AIS93]Agrawal, R., Imielinski, T. and Swami, A. “Mining Association Rules
Between Sets of Items in Large Databases,” Proceedings of 1993 ACMSIGMOD (International Conference on Management of Data), Washington, D.C., May 1993, pp.207-216.
[AS95]Agrawal, R. and Srikant, R., “Mining Sequential Patterns: Generalizations and Performance Improvements,” Research Report RJ 9994, IBM Almaden Research Center, San Jose, California, Dec, 1995.
[APHB98]Anand, S. S., Patrick, A., Hughes, J. G. and Bell, D. A., “A Data Mining Methodology for Cross-sales,” Knowledge-Based Systems (10: 7) 1998, pp: 449-461.
[ALSS95]Agrawal, R., Lin, K., Sawhney, H. S. and Shim, K., “Fast Similarity
Search in the Presence of Noise, Scaling and Translation in Time-Series Databases,” Proceedings of the 21st International Conference on Very Large Data Bases, Zurich, Switzerland, September 1995.
[APWZ95]Agrawal, R., Psaila, G., Wimmers, E. L. and Zait, M., “Querying Shapes of Histories,” Proceedings of the 21st International Conference on Very Large Data Bases, Zurich, Switzerland, September 1995, pp. 502-514.
[ALSS95]Agrawal, R., Lin, K., Sawhney, H. S. and Shim, K., “Fast Similarity
Search in the Presence of Noise, Scaling and Translation in Time-Series Databases,” Proceedings of the 21st International Conference on Very Large Data Bases, Zurich, Switzerland, September 1995.
[BST99]Berson, A., Smith, S., Thearling, K., "Building Data Mining Applications for CRM", McGraw-Hill.1999
[BL97]Berry, M. J. A. and Linoff, G., Data Mining Techniques: For Marketing Sale and Customer Support, John Wiley & Sons, Inc., 1997.
[CN89] Clark, P. and Niblett, T., “The CN2 Induction Algorithm,” Machine Learning, Vol. 3, 1989, pp.261-283.
[E93]Everitt, B. S., Cluster Aanlysis, John Wiiley & Sons, Inc., 1993.
[EM97] Estivill-Castro, V. and Murray, A. T., “Spatial Clustering for Data Mining with Generic Algorithms,” Technical Report FIT-TR-97-10, Faculty of Information Management, Queensland University of Technology, Sept, 1997.
[HP98]Ha, S. H. and Park, S. C., “Application of Data Mining Tools to Hotel Data Mart on the Intranet for Database Marketing,” Expert Systems With Applications (15: 1) 1998, pp: 1-31.
[HFT95]Han, J., Fu, Y. and Tang, S., “Advances of the DBLearn System for Knowledge Discovery in Large Databases”, Proc. of 1995 Int’l Joint Conf. on Artificial Intelligence (IJCAI’95), Montreal, Canada, Aug, 1995, pp.2049-2050.
[JD88]Jain, A. K. and Dubes, R. C., Algorithms for Clustering Data, Prentice Hall, 1998.
[KWR02]Kamakura, W., Wedel, M., Rosa, F. and Mazzon, J., "Cross-selling Through Database Marketing: a Mixed Data Factor Analyzer for Data Augmentation and Prediction," Journal of Research in Marketing, 2002.
[K97]Kotlor, P. “Marketing management : analysis,planning,implementation, and control”, Prentice-Hall. Inc1997
[KR90]Kaufman, L. and Rousseeuw, P.J.,”Finding Groups in Data: An Introduction to Cluster Analysis,”John Wiley & Sons, Inc.,New York, NK,1990.
[KR90] Kaufman, L. and Rousseeuw, P.J.,” Finding Groups in Data: An Introduction to Cluster Analysis,” John Wiley & Sons, Inc.,New York, NK, 1990.
[LC94]Lewis, D. and Catlett, J., “Heterogeneous Uncertainty Sampling for Supervised Learning,” Proceedings of the 11th International Conference on Machine Learning, 1994, pp.144-156.
[MJP96]M.-S. Chen, J. Han, and P.S. Yu, "Data Mining: An Overview from Database Perspective'', IEEE Transactions on Knowledge and Data Engineering,1996
[MPG02]McBurney, P., Parsons, S. , Green, J., " Forecasting market demand for new telecommunications services", Telematics and Informatics, Vol. 19, No. 3, August 2002, pp.225-249.
[PHSV97] Peter Cabena, Hadjnian, Stadler, Verhees, Zanasi, Alessandro Zanasi,"Discovering Data Mining From Concept to Implementation", Prentice-Hall Inc., 1997.
[P96]Peter, B.” MCI Leverages Data Warehouse Technology to Strengthen its Marketing Campaigns”, DBMS, December 1996
[PD93]Peppers, D. and Rogers, M., "The one-to-one future", New York: Currency, 1993
[PR01] Peppers, D. and Rogers, M., ”One to One B2B: Customer Development Strategies for the Business-to-Business World”, Cahners Business Information, Inc., 2001.
[Q86]Quinlan, J. R., “Induction of Decision Tree”, Machine Learning, Vol. 1, 1986, pp.81-106.
[Q93]Quinlan, J. R., “C4.5 program for Machine Learning”, Morgen Kaufmann Publishers,San Mateo,CA,1993.
[TR03]Tennant,C., Roberts,P.,"The creation and application of a self-assessment process for new product introduction",International Journal of Project Management, Vol. 21, No. 2, February 2003, pp.77-87.
[FK02] Fildes, R., Kumar ,V., "Telecommunications demand forecasting––a review", International Journal of Forecasting, Vol. 18, No. 4, October-December 2002, pp.489-522.
[FRM94]Faloutsos, C., Ranganathan, M. and Manolopoulos, Y.,”Fast Subsequence Matching in Time-Series Databases,”Proceedings of the ACM SIGMOD conference on Management of Data, May 1994.
[NB95]NATHANIEL J.AND BRAD B., ”Going slow to go fast”, The McKinsey Quarterly, 1995 Number 4
[NH94] Ng, R. and Han, J.,” Efficient and Effective Clustering Methods for Spatial Data Mining,” Proceedings of the 20th Conference on Very Large Data Bases, Santiago, Chile, 1994.
[TS98]Thomas, S. and Sarawagi, S., “Mining Generalized Association Rules and Sequential Patterns Using SQL Queries,”Proc. of the 4th Int''l Conference on Knowledge Discovery in Databases and Data Mining, New York, Aug, 1998.
[WHK98] Wei, C. P., Hu, P. J-H. and Kung, L. M., ”Multiple-Level Clustering
Analysis for Data Mining Applications,” Proceedings of 4th Informs Joint Conference on Information Systems and Technology, May, 1999.
[WHK98]Wei, C. P., Hu, P. J-H. and Kung, L. M., ”Multiple-Level Clustering Analysis for Data Mining Applications,” Proceedings of 4th Informs Joint Conference on Information Systems and Technology, May, 1999.
[WB98]Westphal, C. and Blaxton, T.,”Data Mining Solutions,” John Wiley &
Sons, Inc., 1998.
[ZRL96]Zhang, T., Ramarkrishnan, R. and Livny, M.,”BIRCH: An Efficient Data Clustering Method for Very Large Database,”Proceedings of the ACM SIGMOD International Conference on Management of Data, Montreal, Canada, 1996.
[CS91]Clancy J., Shulman S.; “The Marketing Revolution”, Harper Business 1991
[CK95]Cooper R. G. and Kleinschmidt E. J., “Benchmarking the Firm’s Critical Success Factors in New Product Development”, Journal of New Product Development,Vol. 12, pp 374- 391, 1995
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top