跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/08/02 16:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張信珉
研究生(外文):Sin-Min Chang
論文名稱:新寬頻電磁能隙(EBG)結構以抑制地彈雜訊之研究
論文名稱(外文):A New Broadband Electromagnetic Band-gap (EBG) PowerPlanes with High Suppression of Ground Bounce Noise
指導教授:吳宗霖吳宗霖引用關係
指導教授(外文):Tzong-Lin Wu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:83
中文關鍵詞:電源平面電磁干擾接地彈跳
外文關鍵詞:Ground BouncePower PlaneElectromagnetic interference
相關次數:
  • 被引用被引用:0
  • 點閱點閱:396
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文中,首先介紹前人對於印刷電路板中抑制接地彈跳雜訊的一些做法、原理及他們的研究成果,並以個人淺見整理出一些優缺點比較。介紹EBG結構由在光學研究中的PBG結構抑制接地彈跳雜訊演變而來,並定義原本PBG結構的五大參數。並由裸板與PBG板做比較,由實測與模擬結果比較驗證抑制接地彈跳雜訊的效果,並提出一些優缺點比較。再來以HFSS模擬軟體對變動PBG
結構的五大參數做模擬研究,希望能找出結構的最佳解(Optimal Solution)。再與原本的PBG結構設計做在抑制接地彈跳雜訊的效果比較。並由實測與模擬比較驗證最佳解抑制接地彈跳雜訊的效果。也針對縮小EBG結構的尺寸觀察其中心頻率與頻寬往高頻方向移動的驅勢。PBG結構設計n增加的綜合效應對S21與S31而言是中心頻率向右偏移、頻寬增加與止帶深度變淺的三大特性。最後我們提出PBG新結構設計,以解決第四章中PBG舊結構設計中訊號完整性(SI)不良與低頻響應不佳這兩大問題。當然在尋找過程中我們付出了犧牲抑制雜訊頻寬當代價,PBG新結構通道以Meander、Buddha、Budder三種結構設計,與實際測量的比較以驗證模擬的準確性。
In This Thesis , We primarily introduce some results with suppression of ground bounce noise in high-speed PCB by the formal researchers and summarize their advantages and weaknesses .In the next section .we explain why the EBG (Electromagnetic Band Gap ) design structure is from PBG (Photonic Band Gap ) concept in optical research field and that its principle can suppress GBN . We also summarize their advantages and weaknesses .In the following part, we define five parameters of EBG design structure to find the optimal solution by HFSS simulation method .The optimal solution can enlarge the bandwidth of suppression of GBN to 5.40GHz.We prove the accuracy of HFSS simulation method by actual measurement .
When the EBG basic cell gradually compact from n=9.their characteristics are according to 1.central frequency towards high frequency 2.bandwidth of suppression of GBN is more broadband 3.
forbiddance band depth becomes wider.
Finally we oppose some new EBG design structures to solve some problems of old EBG design structure .These new EBG design structures can enhance signal integrity (SI) and law frequency response. Include three items 1.Meander design structure 2. Buddha design structure 3. Budder design structure .We also prove the accuracy of HFSS simulation method by actual measurement.
第一章 序論.I
1.1研究背景與動機.1
1.2研究目的與方法.1
1.3論文大綱.1
第二章接地彈跳雜訊3
2.1接地彈跳雜訊現象及原因3
2.2常見在PCB中的接地彈跳雜訊4
2.3共振頻率點的找尋.5
2.3.1共振腔原理5
2.3.2微帶天線共振腔模式理論分析7
2.4常見防治的對策9
2.4.1接地彈跳的電容牆防護9
2.4.2突波附近加一顆大的解耦合電容12
2.4.3電源平面切割矩形狹縫連結通道結構12
2.5傳統式接地彈跳雜訊防治對策的優缺點比較17
2.5.1突波附近加一顆大的解耦合電容的優缺點17
2.5.2突波附近加一顆大的解耦合電容的優缺點17
2.5.3電源平面切割矩形狹縫連結通道結構的優缺點17
第三章光子能帶隙結構(PBG)抑制接地彈跳雜訊法19
3.1 PBG( Photonic Band-Gap )結構的由來19
3.2何謂PBG抑制接地彈跳雜訊法23
3.3 PBG結構在微波電路上抑制雜訊干擾的原理26
3.4 PBG結構對抑制電磁輻射(EMI)的影響31
3.5 PBG抑制法優缺點比較33
第四章尋找PBG抑制接地彈跳雜訊最佳結構尺寸35
4.1由 PBG Layout 設計圖樣及定義五個結構參數35
4.2實測與模擬的比較35
4.3五個結構參數對中心頻率及頻寬和禁止帶深度的影響37
4.4五個結構參數組成最佳解(Optimal Solution)之探討43
4.5最佳解(Optimal Solution)模擬與實際測量的比較44
第五章n的變化對PBG結構抑制接地彈跳雜訊的影響46
5.1原理46
5.2模擬n的變化對抑制接地彈跳雜訊的影響47
5.3 列表比較n的增加對 與 的影響59
5.4 n=36的PBG板子模擬與實際測量的比較61
第六章PBG 新結構探討63
6.1 PBG新結構的主體設計63
6.2 PBG新結構的通道設計66
6.2.1 Meander新通道結構的設計重點66
6.2.2 Buddha新通道結構的設計重點66
6.3 Meander新通道結構的設計及其改善效果67
6.4 Buddha新通道結構的設計及其改善效果70
6.5 Budder新通道結構的設計及其改善效果74
6.6 新通道結構模擬與實測的比較78
第七章 結論79
參考文獻80
[1]林志忠, “以時域有限差分法研究高速數位電路接地彈跳效應對信號完整性及電磁輻射干擾的影響”, 中山大學碩士論文第七章, 7-1~7.3, June 2000.
[2]S. V. den Berghe, F. Olyslager, D. De Zutter, J. De Moerloose, and Temmerman, “Study of the ground bounce caused by power plane resonances,” IEEE Trans. on Electromagnetic Compatibility, vol. 40, no. 2, pp. 111-119, May 1998.
[3]黃峻南, “多層高速數位電路板中接地彈跳效應對電源品質及電磁輻射干擾之模擬與量測”, 中山大學碩士論文第三章, 3-1~3.7, June 2002.
[4]J. N. Hwang, and T. L. Wu, “The Bridging Effect of the Isolation Moat on the EMI Caused by Ground Bounce Noise between Power/Ground planes of PCB,” in Proc. of IEEE Int. Symp. on EMC, 2001, vol.1 pp. 471-474.
[5]Y. H. Lin, and T. L. Wu, “Investigation of signal quality and radiated emission of microstrip line on imperfect ground plane: FDTD analysis and measurement,” in Proc. of IEEE Int. Symp. on EMC, 2001, vol.1 pp. 319-324.
[6]J. Fan, Y. Ren, J. Chen, D. M. Hockanson, H. Shi, J. L. Drewniak, T. H. Hubing, T. P. V. Doren, and E. DuBroff, “RF isolation using power islands in dc power bus design,” Proceedings of the IEEE International Symposium on EMC., pp. 838-843, 1999.
[7]Jiyoung Seo, Bomson Lee, “Performance Enhancement of Antennas Using PBG Structures”
[8]E. Yablonovitch, Phys. Rev. Lett. 58, 2059, 1987.
[9]E. Yablonovitch, ” photonic band-gap structures” J.Opt.Soc.Amer. B,Opt.Phys., vol.10, pp.283-295, Feb.1993.
[10]F. R. Yang, K. P. Ma, Y. Q. and T. Itoh, “A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuit,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 8, pp. 1509-1514, Aug. 1999.
[11]Fei-Ran Yong, Yongxi Qian , and Tatsuo Itoh, “A Novel Uniplanar Compact PBG Structure for Filter and Mixer Applications,” IEEE MTT Symposium, vol. 3, pp. 919-922, June. 1999.
[12]Roberto Coccioli, K. P. Ma, and T. Itoh, “Aperture-Coupled Patch Antenna on UC-PBG Substrate,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 11, pp. 2123-2130, Nov. 1999.
[13]R. Abhari, and G. V. Eleftheriades, “Metallo-dielectric electromagnetic bandgap structures for suppression and isolation of the parallel-plate noise in high-speed circuits,” IEEE Trans. Microwave Theory & Tech., vol. 51, no. 6, pp. 1629-1639, June 2003.
[14]T. Kamgaing, and O. M. Ramahi, “A novel power plane with integrated simultaneous switching noise mitigation capability using high impedance surface,” IEEE Microwave and Wireless Components Letters, vol. 13 no. 1 pp. 21-23, January 2003.
[15]J. N. Hwang and T. L. Wu, “Coupling of the ground bounce noise to the signal trace with via transition in partitioned power bus of PCB,” IEEE Int. Sym. on Electromagnetic Compatibility, vol. 2, pp. 733-736, August 2002.
[16]S. Radu and D. Hockanson, “An Investigation of PCB radiated emissions from simultaneous switching noise,” IEEE Int. Sym. on Electromagnetic Compatibility, vo1. 2, pp. 893-898, August 1999.
[17]Tzong-Lin Wu, S. T. Chen, J. N. Huang, Y. H. Lin, “Numerical and Experimental Investigation of Radiation Caused by the Switching Noise on the Partitioned DC Reference Planes of High Speed Digital PCB,”IEEE Transactions on Electromagnetcic Comaptibility, Vol. 46, No. 1, pp. 33-45, Feb. 2004.
[18]Tzong-Lin Wu, Yen-Hui Lin, and Sin-Ting Chen, “A Novel Power Planes with Low Radiation and Broadband Suppression of Ground Bounce Noise Using Photonic Bandgap Structures,” to be published in IEEE Microwave and Wireless Components Letters, Aug. 2004.
[19]Woonphil Kim, Bomson Lee, “Modelling and design of 2D UC-PBG structure using transmission line theory” IEEE Antennas and Propagation Society International Symposium, Vol. 3, pp. 780-783, June 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top