跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/13 03:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭俊明
研究生(外文):Jim-Ming Kuo
論文名稱:Neutral系統基於觀測器控制設計之一些論點
論文名稱(外文):Some Aspects of Observer-based Control Design for a Class of Neutral Systems
指導教授:謝哲光謝哲光引用關係
指導教授(外文):Jer-Guang Hsieh
學位類別:博士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:93
中文關鍵詞:Lyapunov泛函Neutral系統基於觀測器控制線性矩陣不等式
外文關鍵詞:Neutral systemsobserver-based controlLyapunov functionalLinear matrix inequality (LMI)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:175
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:2
本論文將考慮一類Neutral系統基於觀測器控制之設計。首先,文中針對Neutral系統,採用Lyapunov泛函理論作為穩定性的分析法則,並分別提出與單一時間延遲相關或無關可穩化的準則來保證此類線性迴授控制系統之漸進穩定性;然後,再利用線性矩陣不等式(LMI)這個有效的求解工具,來分別設計系統的觀測器與控制器。其次,本文也將分別提出針對Neutral系統之多重時間延遲相關或無關穩定化的準則來保證此類線性迴授控制系統之漸進穩定性,並分別設計此類系統的觀測器與控制器。最後,本文將針對Neutral系統之保證代價值基於觀測器控制之設計,並提出與單一時間延遲無關可穩化的準則來保證此類線性迴授控制系統之漸進穩定性,再利用線性矩陣不等式法則,同時設計出此系統的觀測器與控制器增益。此外,文中也將提出一些數值範例與電腦模擬來說明本文的主要結果。
In this dissertation, the stabilization problem and observer-based control of neutral systems are investigated. Firstly, the Lyapunov functional theory is used to guarantee the stability of the system under consideration. The delay-dependent and the delay-independent stabilization criteria are proposed to guarantee asymptotic stability for the neutral systems via linear control. Linear matrix inequality (LMI) approach is used to design the observer and the controller. Secondly, by using the same techniques, we will provide an observer-based controller design method. The delay-dependent and the delay-independent stabilization criteria are proposed to guarantee asymptotic stability for the neutral systems with multiple time delays. Finally, a guaranteed-cost observer-based control for the neutral systems is considered. The analysis is also based on Lyapunov functional so as to establish an upper bound on the closed-loop value of a quadratic cost function. Delay-independent stabilization criterion is proposed to guarantee asymptotic stability for the neutral systems via linear control. By using the LMI approach, we will provide a criterion to design the observer gain and the controller gain simultaneously. Some examples and computer simulation results will also be provided to illustrate our main results.
誌謝 i
摘要 iii
ABSTRACT iv
NOMENCLATURE v
CHAPTER 1 INTRODUCTION 1
1.1 Motivation ………………………………………………….. 1
1.2 Brief Sketch of the Contents ………………………….…….. 5
CHAPTER 2 MATHEMATICAL PRELIMINARIES 7
2.1 Some Definitions …………………………………………… 7
2.2 Preliminary Lemmas ……………………………………….. 8
CHAPTER 3 OBSERVER-BASED CONTROL DESIGN OF NEUTRAL SYSTEMS WITH SINGLE TIME DELAY 11
3.1 Introduction …………………………………………....…... 11
3.2 Delay-dependent Observer-based Control Design of Neutral Systems with Single Time Delay…………………………… 13
3.3 Delay-independent Observer-based Control Design of Neutral Systems with Single Time Delay............................... 26
CHAPTER 4 OBSERVER-BASED CONTROL DESIGN OF NEUTRAL SYSTEMS WITH MULTIPLE TIME DELAYS 36
4.1 Introduction …………………………………………….….. 36
4.2 Delay-dependent Observer-based Control Design for a Class of Neutral Systems with Multiple Time Delays…………… 38
4.3 Delay-independent Observer-based Control Design for a Class of Neutral Systems with Multiple Time Delays…….. 51
CHAPTER 5 GUARANTEED-COST OBSERVER-BASED CONTROL DESIGN OF NEUTRAL SYSTEMS 64
5.1 Introduction ……………………………………………….. 64
5.2 Guaranteed-cost Delay-independent Observer-based Control Design of Neutral Systems with Single Time Delay………. 66
CHAPTER 6 CONCLUSIONS AND DISCUSSIONS 75
REFERENCES 81
[Bar.1]Bartosiewicz, Z., “Approximate controllability of neutral systems with delays in control,” Journal of Differential Equations, Vol. 51, pp. 295-325, 1984.
[Bha.1]Bhatt, S. J. and Hsu, C. S., “Stability criteria for second-order dynamical systems with time lag,” Journal of Applied Mechanics, Vol. 33, pp. 113-118, 1966.
[Bha.2]Bhat, K. P. M. and Koivo, H. N., “An observer theory for time-delay systems,” IEEE Transactions on Automatic Control, Vol. 21, pp. 266-269, 1976.
[Bli.1]Bliman, P. A., “Lyapunov equation for the stability of linear delay systems of retarded and neutral type,” IEEE Transactions on Automatic Control, Vol. 47, pp. 327-335, 2002.
[Bli.2]Bliman, P. A., “Stability of nonlinear delay systems: delay-independent small gain theorem and frequency domain interpretation of the Lyapunov-Krasovskii method,” International Journal of Control, Vol. 75, pp. 265-274, 2002.
[Boy.1]Boyd, S. P., El Ghaoui, L., Feron, E., and Balakrishnan, V., Linear Matrix Inequalities in System and Control Theory, Philadelphia: SIAM, 1994.
[Byr.1]Byrnes, C. I, Spong, M. W., and Tarn, T. J., “A complex variable approach to feedback stabilization of linear neutral delay-differential systems,” Mathematical System Theory, Vol. 17, pp. 97-133, 1984.
[Cct.1]Chen, C. T., Linear System Theory and Design, New York: Holt Rinechart and Winston, 1984.
[Che.1]Chen, J. D., Lien, C. H., Fan, K. K., and Cheng, J. S., “Delay-dependent stability criterion for neutral time-delay systems,” Electronic Letters, Vol. 36, pp. 1897-1898, 2000.
[Che.2]Chen, J. D., Lien, C. H., and Chou, J. H., “Flexible stability criteria for a class of neutral systems with multiple time delays via LMI approach,” Journal of Chinese Institute of Engineers, Vol. 25, pp. 341-348, 2003.
[Chg.1]Cheng, J. S. and Hsieh, J. G., “Deterministic control of uncertain feedback systems with time-delay and series nonlinearities,” International Journal of Systems Science, Vol. 26, pp. 691-701, 1995.
[Cla.1]Clarkson, I. D. and Goodall, D. P., “On the stabilizability of imperfectly known nonlinear delay systems of the neutral type,” IEEE Transactions on Automatic Control, Vol. 45, pp. 2326-2331, 2000.
[Dat.1]Datko, R., “Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks,” SIAM Journal on Control and Optimization, Vol. 26, pp. 697-713, 1988.
[Doy.1]Doyle, J., Packard, A., and Zhou, K., “Review of LFT’s, LMI’s and ,” in Proceedings of the 30th IEEE Conference on Decision and Control, Brighton, pp. 1227-1232, 1991.
[Dug.1]Dugard, L. and Verriest, E. I., Stability and Control of Time-delay Systems, London: Springer-Verlag, 1998.
[El.1]El Ghaoui, L. and Niculescu, S. I., Advances in Linear Matrix Inequality Methods in Control, Philadelphia: SIAM, 2000.
[Emr.1]Emre, E. and Khargonekar, P. P., “Regulation of split linear systems over ring: coefficient assignment and observers,” IEEE Transactions on Automatic Control, Vol. 27, pp. 104-113, 1982.
[Fan.1]Fan, K. K., Lien, C. H. and Hsieh, J. G., “Stability criteria for a class of neutral systems with uncertain nonlinearity,” in 2000 Conference on Industrial Automatic Control & Power Applications, Kaohsiung, ROC, pp. D2-1-D2-5, 2000.
[Fan.2]Fan, K. K., Lien, C. H. and Chen, J. D., “ control of linear neutral systems,” in 2000 Conference on Industrial Automatic Control & Power Applications, Kaohsiung, ROC, pp. D3-36-D3-40, 2000.
[Fan.3]Fan, K. K., Lien, C. H. and Hsieh, J. G., “Asymptotic stability for a class of neutral systems with discrete and distributed time delays,” Journal of Optimization Theory and Applications, Vol. 114, pp. 705-716, 2002.
[Fan.4]Fan, K. K., Lien, C. H. and Hsieh, J. G., “Delay-dependent stability criterion for neutral time-delay systems via linear matrix inequality approach,” Journal of Mathematical Analysis and Applications, Vol. 273, pp. 580-589, 2002.
[Fia.1]Fiagbedzi, Y. A. and Pearson, A. E. “Output feedback stabilization of delay systems via generalization of transformation method,” International Journal of Control, Vol. 51, pp. 801-822, 1990.
[Fia.2]Fiagbedzi, Y. A., “Feedback stabilization of neutral systems via the transformation technique,” International Journal of Control, Vol. 59, pp. 1579-1589, 1994.
[Fri.1]Fridman, E. and Shaked, U., “A descriptor system approach to control of linear time-delay systems,” IEEE Transactions on Automatic Control, Vol. 47, pp. 253-270, 2002.
[Fri.2]Fridman, E. and Shaked, U., “On delay-dependent passivity,” IEEE Transactions on Automatic Control, Vol. 47, pp. 664-669, 2002.
[Fu.1]Fu, M., Olbrot, A. W., and Polis, M. P., “Robust stability for time-delay systems: the edge theorem and graphical tests,” IEEE Transactions on Automatic Control, Vol. 34, pp. 813-820, 1989.
[Fu.2]Fu, M., Olbrot, A. W., and Polis, M. P., “The edge theorem and graphical tests for robust stability of neutral time-delay systems,” Automatica, Vol. 27, pp. 739-741, 1991.
[Ger.1]Germani, A., Manes, C., and Pepe, P., “A new approach to state observation of nonlinear systems with delayed output,” IEEE Transactions on Automatic Control, Vol. 47, pp. 96-101, 2002.
[Gor.1]G’orecki, H., Fuska, S., Garbowski, P., and Korytowski, A., Analysis and Synthesis of Time-Delay Systems, New York: J. Wiley, 1989.
[Gou.1]Goubet-Bartholomeus, A., Dambrine, M., and Richard, J. P., “Stability of perturbed systems with time-varying delays,” Systems & Control Letters, Vol. 31, pp. 155-163, 1997.
[Gre.1]Gressang, R. V. and Lamont, G. B., “Observer for systems characterized by semigroup,” IEEE Transactions on Automatic Control, Vol. 20, pp. 523-528, 1975.
[Had.1]Haddock, J. R. and Terjeki, J., “Lyapunov-Razumikhin functions and an invariance principle for functional differential equations,” Journal of Differential Equations, Vol. 48, pp. 95-122, 1983.
[Hal.1]Hale, J. K., Theory of Functional Differential Equations, New York: Springer-Verlag, 1977.
[Hal.2]Hale, J. K. and Verduyn Lunel, S. M., Introduction to Functional Differential Equations, New York: Springer-Verlag, 1993.
[Hma.1]Hmamed, A., “Further results on the stability of uncertain time-delay systems,” International Journal of Systems Science, Vol. 22, pp. 605-614, 1991.
[Hou.1]Hou, M., Zitek, P., and Patton, R. J., “An observer design for linear time-delay systems,” IEEE Transactions on Automatic Control, Vol. 47, pp. 121-125, 2002.
[Hsia.1]Hsiao, F. H., Pan, S. T. and Teng, C. C., “An efficient algorithm for finding the D-stability bound of discrete singularity perturbed systems with multiple time delays,” International Journal of Control, Vol. 72, pp. 1-17, 1999.
[Hsie.1]Hsieh, J. G. and Chen, G. W., Linear Algebra and Dynamic Systems, 2nd Edition, Taipei: Chuan Hwa, 2002.
[Hsu.1]Hsu, S.C. and Bhatt, S. J., “Stability charts for second-order dynamical systems with time lag,” Journal of Applied Mechanics, Vol. 33, pp. 119-124, 1966.
[Hua.1]Huang, Y. P. and Zhou, K., “Robust stability of uncertain time-delay systems,” IEEE Transactions on Automatic Control, Vol. 45, pp. 2169-2173, 2000.
[Hui.1]Hui, G. D. and Hu, G. D., “Simple criteria for stability of neutral systems with multiple delays,” International Journal of Systems Science, Vol. 28, pp. 1325-1328, 1997.
[Hux.1]Hu, X., “A new stability table for discrete-time systems,” Systems & Control Letters, Vol. 22, pp. 385-392, 1994.
[Ion.1]Ionescu, V., Niculescu, S. I., Dion, J. M., Dugard, L., and Li, H. Z., “Generalized Popov theory applied to state-delayed systems,” Automatica, Vol. 37, pp. 91-97, 2001.
[Iva.1]Ivanescu, D., Dion, J. M., Dugard, L., and Niculescu, S. I., “Dynamical compensation for time-delay systems: an LMI approach,” International Journal of Robust and Nonlinear Control, Vol. 10, pp. 611-628, 2000.
[Jua.1]Juang, Y. T., Kuo, T. S., and Hsu, C. F., “Stability robustness analysis of digital control systems in state-space models,” International Journal of Control, Vol. 46, pp. 1547-1556, 1987.
[Kam.1]Kamen, E. W., “Linear systems with commensurate time delays: stability and stabilization independent of delay,” IEEE Transactions on Automatic Control, Vol. 27, pp. 367-375, 1982.
[Kim.1]Kim, J. H., “Delay and its time-derivative dependent robust stability of time-delayed linear systems with uncertainty,” IEEE Transactions on Automatic Control, Vol. 46, pp. 1547-1556, 2001.
[Kol.1]Kolmanovskii, V. B. and Nosov, V. R., Stability of Functional Differential Equations, New York: Academic Press, 1986.
[Kol.2]Kolmanovskii, V. B. and Myshkis, A., Applied Theory of Functional Differential Equations, New York: Kluwer Academic Publishers, 1992.
[Kol.3]Kolmanovskii, V. B. and Myshkis, A., Introduction to the Theory and Applications of Functional Differential Equations, Dordrecht: Kluwer Academic Publishers, 1999.
[Kol.4]Kolmanovskii, V. B. and Richard, J. P., “Stability of some linear systems with delays,” IEEE Transactions on Automatic Control, Vol. 44, pp. 984-989, 1999.
[Kol.5]Kolmanovskii, V. B., Niculescu, S. I., and Richard, J. P., “On the Lyapunov-Krasovskii functionals for stability analysis of linear delay systems,” International Journal of Control, Vol. 72, pp. 374-384, 1999.
[Kol.6]Kolmanovskii, V. B., Niculescu, S. I., and Gu, K., “Delay effects on stability: a survey,” in Proceedings 38th IEEE Coference on Decision and Control, Phoenix, USA, pp. 1993-1998, 1999.
[Kua.1]Kuang, Y., Delay Differential Equations with Applications in Population Dynamics, Boston: Academic Press, 1993.
[Kuo.1]Kuo, J. M., Lien, C. H., Fan, K. K., and Hsieh, J. G., “Delay-independent observer-based control for a class of neutral systems,” ASME Journal of Dynamic Systems, Measurement, and Control, to appear, 2004.
[Kuo.2]Kuo, J. M., Lien, C. H., Fan, K. K., and Hsieh, J. G., “Observer-based control design for a class of neutral systems via LMI approach,” submitted to IEE Proceedings-Control Theory and Applications, 2003.
[Kuo.3]Kuo, J. M., Lien, C. H., Fan, K. K., and Hsieh, J. G., “Delay-independent observer-based control design for a class of neutral systems with multiple time delays,” in ICICS2003, International Conference on Informatics, Cybernetics, and Systems, Kaohsiung, ROC, pp. 2018-2023, 2003.
[Kuo.4]Kuo, J. M., Lien, C. H., Fan, K. K., and Hsieh, J. G., “Delay-dependent observer-based control design for a class of neutral systems with multiple time delays,” in ICICS2003, International Conference on Informatics, Cybernetics, and Systems, Kaohsiung, ROC, pp. 1752-1757, 2003.
[Kuo.5]Kuo, J. M., Lien, C. H., Fan, K. K., and Hsieh, J. G., “Guaranteed-cost delay-independent observer-based control for a class of neutral systems,” CAC2004, 中華民國自動控制研討會, 彰化, ROC, paper no. C_01-02, 2004.
[Lak.1]Laksmikantham, V. and Leela, S., Differential and Integral Inequalities, New York: Academic Press, 1969.
[Li.1]Li, X. and de Souza, C. E., “Delay-dependent robust stability and stabilization of uncertain linear delay systems: a linear matrix inequality approach,” IEEE Transactions on Automatic Control, Vol. 42, pp. 1141-1148, 1997.
[Lie.1]Lien, C. H., “Asymptotic criterion for neutral systems with multiple delays,” Electronics Letters, Vol. 35, pp. 850-852, 1999.
[Lie.2]Lien, C. H. and Yu, K. W., and Hsieh, J. G., “Stability conditions for a class of neutral systems with multiple time delays,” Journal of Mathematical Analysis and Applications, Vol. 245, pp. 20-27, 2000.
[Lie.3]Lien, C. H. and Chen, J. D., “Discrete-delay-independent and discrete-delay-dependent criteria for a class of neutral systems,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 125, pp. 33-41, 2003.
[Lie.4]Lien, C. H., “New stability criterion for a class of uncertain nonlinear neutral time-delay systems,” International Journal of Systems Science, Vol. 32, pp. 215-219, 2001.
[Liu.1]Liu, P. L. and Su, T. J., “Robust stability of interval time delay systems with delay dependence,” Systems & Control Letters, Vol. 33, pp. 231-239, 1998.
[Lix.1]Liu, X. and Xu, D. Y., “Uniform asymptotic stability of abstract functional differential equations,” Journal of Mathematical Analysis and Applications, Vol. 216, pp. 626-643,1997.
[Log.1]Logemann, H. and Pondolfi, L., “A note on stability and stabilizability of neutral systems,” IEEE Transactions on Automatic Control, Vol. 39, pp. 138-143, 1994.
[Log.2]Logemann, H. and Townley, S., “The effect of small delays in the feedback loop on the stability of neutral systems,” Systems & Control Letters, Vol. 27, pp. 267-274, 1996.
[Ma.1]Ma, W. B., Adachi, N, and Amemiya, T., “Delay-independent stabilization of uncertain linear systems of neutral type,” Journal of Optimization Theory and Applications, Vol. 84, pp. 393-405, 1995.
[Mah.1]Mahmoud, M. S., “Robust control of linear neutral systems,” Automatica, Vol. 38, pp. 757-764, 2000.
[Mah.2]Mahmoud, M. S., Robust Control and Filtering for Time-delay Systems, New York: Marcel Dekker, 2000.
[Mal.1]Malek-Zavarei, M. and Jamshidi, M., Time-Delay Systems: Analysis, Optimization, and Applications, Amsterdam: North-Holland, 1987.
[Mei.1]Meinsma, G., “Elementary proof of the Routh-Hurwitz test,” Systems & Control Letters, Vol. 25, pp. 237-242, 1995.
[Nar.1]Narendra, K. S. and Taylor, J. H., Frequency Domain Criteria for Absolute Stability, New York: Academic Press, 1973.
[Nia.1]Nian, X. and Feng, J., “Guaranteed-cost control of a linear uncertain system with time-varying delays: An LMI approach,” IEE Proceedings on Control Theory and Applications, Vol. 150, pp. 17-22, 2003.
[Nic.1]Niculescu, S. I., Neto, A. T., Dion, J. M., and Dugard, L., “Delay-dependent stability of linear systems with delayed state: an LMI approach,” in Proceedings of the 34th IEEE Conference on Decision and Control, New Orleans, LA, Vol. 2, pp. 1495-1496, 1995.
[Nic.2]Niculescu, S. I., “On delay dependent stability under model transformations of some neutral linear systems,” International Journal of Control, Vol. 74, pp. 609-617, 2001.
[Nic.3]Niculescu, S. I. and Lozano, R., “On the passivity of linear delay systems,” IEEE Transactions on Automatic Control, Vol. 46, pp. 460-464, 2001.
[O’Co.1]O’Connor, D. A. and Tarn, T. J., “On stabilization by feedback for neutral differential difference equations,” IEEE Transactions on Automatic Control, Vol. 28, pp. 615-618, 1983.
[O’Co.2]O’Connor, D. A. and Tarn, T. J., “On the function space controllability of linear neutral systems,” SIAM Journal on Control and Optimization, Vol. 13, pp. 1334-1353, 1983.
[Ouc.1]Oucheriah, S., “Measures of robustness for uncertain time-delay linear systems,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 117, pp. 633-635, 1995.
[Ort.1]Ortega, J. M., Numerical Analysis, Academic Press, New York, 1972.
[Pan.1]Pandolfi, L., “Stabilization of neutral functional differential equation,” Journal of Optimization Theory and Applications, Vol. 20, pp. 191-199, 1976.
[Par.1]Park, J. H. and Won, S., “Asymptotic stability of neutral systems with multiple delays,” Journal of Optimization Theory and Applications, Vol. 103, pp. 183-200, 1999.
[Par.2]Park, J. H. and Won, S., “Stability analysis for neutral delay-differential systems,” Journal of the Franklin Institute, Vol. 337, pp. 1-9, 2000.
[Par.3]Park, J. K., Choi, C. H., and Choo, H. S., “Dynamic anti-windup method for a class of time-delay control systems with input saturation,” International Journal Robust and Nonlinear Control, Vol. 10, pp. 457-488, 2000.
[Par.4]Park, J. H., “A new delay-dependent criterion for neutral systems with multiple delays,” Journal of Computational and Applied Mathematics, Vol. 136, pp. 177-184, 2001.
[Par.5]Park, J. H., “Robust guaranteed cost control for uncertain linear differential systems of neutral type,” Applied Mathematics and Computation, Vol. 140, pp. 523-535, 2003.
[Pea.1]Pearson, A. E. and Fiagbedzi, Y. A., “An observer for time lag systems,” IEEE Transactions on Automatic Control, Vol. 34, pp. 775-777, 1989.
[Sal.1]Salamon, D., “Observers and duality between observation and state feedback for time-delay systems,” IEEE Transactions on Automatic Control, Vol. 25, pp. 1187-1192, 1980.
[Sal.2]Salamon, D., On Control and Observation of Neutral Systems, London: Pitman Advanced Publishing, 1984.
[Ste.1]Stepan, G., Retarded Dynamical Systems: Stability and Characteristic Functions, Essex: Longman Scientific & Technical, 1989.
[Su.1]Su, T. J. Kuo, T. S., and Sun, Y. Y., “Robust stability for linear time-delay systems with linear parameter perturbation,” International Journal of Systems Science, Vol. 19, pp. 2123-2129, 1988.
[Suj.1]Su, J. H., “Further results on the robust stability of linear systems with a single time delay,” Systems & Control Letters, Vol. 23, pp. 375-379, 1994.
[Tar.1]Tarn, T. J., Yang, T., Zeng, X., and Guo, C., “Periodic output feedback stabilization of neutral systems,” IEEE Transactions on Automatic Control, Vol. 41, pp. 511-521, 1996.
[Tho.1]Thowsen, A., “The Routh-Hurwitz method for stability determination of linear differential-difference systems,” International Journal of Control, Vol. 33, pp. 991-995, 1981.
[Tho.2]Thowsen, A., “Uniform ultimate boundness of the solutions of uncertain dynamic delay systems with state-dependent and memoryless feedback control,” International Journal of Control, Vol. 37, pp. 1133-1143, 1983.
[Tis.1]Tissir, E. and Hmamed, A.,”Stability tests of interval time delay systems,” Systems & Control Letters, Vol. 23, pp. 263-270, 1994.
[Tri.1]Trinh, H. and Aldeen, M., “An asymptotic model observer for linear autonomous time lag systems,” IEEE Transactions on Automatic Control, Vol. 42, pp. 742-745, 1997.
[Tri.2]Trinh, H., “Linear functional state observer for time-delay systems,” International Journal of Control, Vol. 72, pp. 1642-1658, 1999.
[Ver.1]Verriest, E. I., Fan, M. K. H., and Kullstam, J., “Frequency domain robust stability criteria for linear delay systems,” in Proceedings 32nd IEEE Coference on Decision and Control, San Antonio, USA, pp. 3473-3478, 1993.
[Vid.1]Vidyasagar, M., Nonlinear System Analysis, New York: Prentice-Hall, 1978.
[Wan.1]Wang, Z., Lam, J., and Burnham, K. J., “Stability analysis and observer design for neutral delay systems,” IEEE Transactions on Automatic Control, Vol. 47, pp. 478-483, 2002.
[Wat.1]Watanabe, K., “Finite spectrum assignment and observer for multivariable systems with commensurate delays,” IEEE Transactions on Automatic Control, Vol. 31, pp. 543-550, 1986.
[Wu.1]Wu, H. S. and Mizukami, K., “Robust stabilization of uncertain linear dynamical systems with time-varying delay,” Journal of Optimization Theory and Applications, Vol. 82, pp. 593-606, 1994.
[Xu.1]Xu, S. Y., Lam, J., and Yang, C. W., “ and positive-real control for linear neutral delay systems,” IEEE Transactions on Automatic Control, Vol. 46, pp. 1321-1326, 2001.
[Yan.1]Yanushevsky, R. T., “Optimal control of linear differential-difference systems of neutral type,” International Journal of Control, Vol. 49, pp. 1835-1850, 1989.
[Yan.2]Yanushevsky, R. T., “On robust stabilizability of linear differential-difference systems with unstable D-operator,” IEEE Transactions on Automatic Control, Vol. 37, pp. 652-653, 1992.
[Yjj.1]Yan, J. J., “Robust stability analysis of uncertain time delay systems with delay-dependence,” Electronics Letters, Vol. 37, pp. 135-137,2001.
[Zha.1]Zhang, J., Knopse, C. R., and Tsiotras, P., “Stability of time-delay systems: equivalence between Lyapunov and scaled small-gain conditions,” IEEE Transactions on Automatic Control, Vol. 46, pp. 482-486, 2001.
[Zho.1]Zhou, K. and Doyle, J. C., Essentials of Robust Control, New Jersey: Prentice Hall, 1998.
[Zit.1]Zitek, P., “Anisochronic state observers for hereditary systems,” International Journal of Control, Vol. 71, pp. 581-599, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文