|
[Bar.1]Bartosiewicz, Z., “Approximate controllability of neutral systems with delays in control,” Journal of Differential Equations, Vol. 51, pp. 295-325, 1984. [Bha.1]Bhatt, S. J. and Hsu, C. S., “Stability criteria for second-order dynamical systems with time lag,” Journal of Applied Mechanics, Vol. 33, pp. 113-118, 1966. [Bha.2]Bhat, K. P. M. and Koivo, H. N., “An observer theory for time-delay systems,” IEEE Transactions on Automatic Control, Vol. 21, pp. 266-269, 1976. [Bli.1]Bliman, P. A., “Lyapunov equation for the stability of linear delay systems of retarded and neutral type,” IEEE Transactions on Automatic Control, Vol. 47, pp. 327-335, 2002. [Bli.2]Bliman, P. A., “Stability of nonlinear delay systems: delay-independent small gain theorem and frequency domain interpretation of the Lyapunov-Krasovskii method,” International Journal of Control, Vol. 75, pp. 265-274, 2002. [Boy.1]Boyd, S. P., El Ghaoui, L., Feron, E., and Balakrishnan, V., Linear Matrix Inequalities in System and Control Theory, Philadelphia: SIAM, 1994. [Byr.1]Byrnes, C. I, Spong, M. W., and Tarn, T. J., “A complex variable approach to feedback stabilization of linear neutral delay-differential systems,” Mathematical System Theory, Vol. 17, pp. 97-133, 1984. [Cct.1]Chen, C. T., Linear System Theory and Design, New York: Holt Rinechart and Winston, 1984. [Che.1]Chen, J. D., Lien, C. H., Fan, K. K., and Cheng, J. S., “Delay-dependent stability criterion for neutral time-delay systems,” Electronic Letters, Vol. 36, pp. 1897-1898, 2000. [Che.2]Chen, J. D., Lien, C. H., and Chou, J. H., “Flexible stability criteria for a class of neutral systems with multiple time delays via LMI approach,” Journal of Chinese Institute of Engineers, Vol. 25, pp. 341-348, 2003. [Chg.1]Cheng, J. S. and Hsieh, J. G., “Deterministic control of uncertain feedback systems with time-delay and series nonlinearities,” International Journal of Systems Science, Vol. 26, pp. 691-701, 1995. [Cla.1]Clarkson, I. D. and Goodall, D. P., “On the stabilizability of imperfectly known nonlinear delay systems of the neutral type,” IEEE Transactions on Automatic Control, Vol. 45, pp. 2326-2331, 2000. [Dat.1]Datko, R., “Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks,” SIAM Journal on Control and Optimization, Vol. 26, pp. 697-713, 1988. [Doy.1]Doyle, J., Packard, A., and Zhou, K., “Review of LFT’s, LMI’s and ,” in Proceedings of the 30th IEEE Conference on Decision and Control, Brighton, pp. 1227-1232, 1991. [Dug.1]Dugard, L. and Verriest, E. I., Stability and Control of Time-delay Systems, London: Springer-Verlag, 1998. [El.1]El Ghaoui, L. and Niculescu, S. I., Advances in Linear Matrix Inequality Methods in Control, Philadelphia: SIAM, 2000. [Emr.1]Emre, E. and Khargonekar, P. P., “Regulation of split linear systems over ring: coefficient assignment and observers,” IEEE Transactions on Automatic Control, Vol. 27, pp. 104-113, 1982. [Fan.1]Fan, K. K., Lien, C. H. and Hsieh, J. G., “Stability criteria for a class of neutral systems with uncertain nonlinearity,” in 2000 Conference on Industrial Automatic Control & Power Applications, Kaohsiung, ROC, pp. D2-1-D2-5, 2000. [Fan.2]Fan, K. K., Lien, C. H. and Chen, J. D., “ control of linear neutral systems,” in 2000 Conference on Industrial Automatic Control & Power Applications, Kaohsiung, ROC, pp. D3-36-D3-40, 2000. [Fan.3]Fan, K. K., Lien, C. H. and Hsieh, J. G., “Asymptotic stability for a class of neutral systems with discrete and distributed time delays,” Journal of Optimization Theory and Applications, Vol. 114, pp. 705-716, 2002. [Fan.4]Fan, K. K., Lien, C. H. and Hsieh, J. G., “Delay-dependent stability criterion for neutral time-delay systems via linear matrix inequality approach,” Journal of Mathematical Analysis and Applications, Vol. 273, pp. 580-589, 2002. [Fia.1]Fiagbedzi, Y. A. and Pearson, A. E. “Output feedback stabilization of delay systems via generalization of transformation method,” International Journal of Control, Vol. 51, pp. 801-822, 1990. [Fia.2]Fiagbedzi, Y. A., “Feedback stabilization of neutral systems via the transformation technique,” International Journal of Control, Vol. 59, pp. 1579-1589, 1994. [Fri.1]Fridman, E. and Shaked, U., “A descriptor system approach to control of linear time-delay systems,” IEEE Transactions on Automatic Control, Vol. 47, pp. 253-270, 2002. [Fri.2]Fridman, E. and Shaked, U., “On delay-dependent passivity,” IEEE Transactions on Automatic Control, Vol. 47, pp. 664-669, 2002. [Fu.1]Fu, M., Olbrot, A. W., and Polis, M. P., “Robust stability for time-delay systems: the edge theorem and graphical tests,” IEEE Transactions on Automatic Control, Vol. 34, pp. 813-820, 1989. [Fu.2]Fu, M., Olbrot, A. W., and Polis, M. P., “The edge theorem and graphical tests for robust stability of neutral time-delay systems,” Automatica, Vol. 27, pp. 739-741, 1991. [Ger.1]Germani, A., Manes, C., and Pepe, P., “A new approach to state observation of nonlinear systems with delayed output,” IEEE Transactions on Automatic Control, Vol. 47, pp. 96-101, 2002. [Gor.1]G’orecki, H., Fuska, S., Garbowski, P., and Korytowski, A., Analysis and Synthesis of Time-Delay Systems, New York: J. Wiley, 1989. [Gou.1]Goubet-Bartholomeus, A., Dambrine, M., and Richard, J. P., “Stability of perturbed systems with time-varying delays,” Systems & Control Letters, Vol. 31, pp. 155-163, 1997. [Gre.1]Gressang, R. V. and Lamont, G. B., “Observer for systems characterized by semigroup,” IEEE Transactions on Automatic Control, Vol. 20, pp. 523-528, 1975. [Had.1]Haddock, J. R. and Terjeki, J., “Lyapunov-Razumikhin functions and an invariance principle for functional differential equations,” Journal of Differential Equations, Vol. 48, pp. 95-122, 1983. [Hal.1]Hale, J. K., Theory of Functional Differential Equations, New York: Springer-Verlag, 1977. [Hal.2]Hale, J. K. and Verduyn Lunel, S. M., Introduction to Functional Differential Equations, New York: Springer-Verlag, 1993. [Hma.1]Hmamed, A., “Further results on the stability of uncertain time-delay systems,” International Journal of Systems Science, Vol. 22, pp. 605-614, 1991. [Hou.1]Hou, M., Zitek, P., and Patton, R. J., “An observer design for linear time-delay systems,” IEEE Transactions on Automatic Control, Vol. 47, pp. 121-125, 2002. [Hsia.1]Hsiao, F. H., Pan, S. T. and Teng, C. C., “An efficient algorithm for finding the D-stability bound of discrete singularity perturbed systems with multiple time delays,” International Journal of Control, Vol. 72, pp. 1-17, 1999. [Hsie.1]Hsieh, J. G. and Chen, G. W., Linear Algebra and Dynamic Systems, 2nd Edition, Taipei: Chuan Hwa, 2002. [Hsu.1]Hsu, S.C. and Bhatt, S. J., “Stability charts for second-order dynamical systems with time lag,” Journal of Applied Mechanics, Vol. 33, pp. 119-124, 1966. [Hua.1]Huang, Y. P. and Zhou, K., “Robust stability of uncertain time-delay systems,” IEEE Transactions on Automatic Control, Vol. 45, pp. 2169-2173, 2000. [Hui.1]Hui, G. D. and Hu, G. D., “Simple criteria for stability of neutral systems with multiple delays,” International Journal of Systems Science, Vol. 28, pp. 1325-1328, 1997. [Hux.1]Hu, X., “A new stability table for discrete-time systems,” Systems & Control Letters, Vol. 22, pp. 385-392, 1994. [Ion.1]Ionescu, V., Niculescu, S. I., Dion, J. M., Dugard, L., and Li, H. Z., “Generalized Popov theory applied to state-delayed systems,” Automatica, Vol. 37, pp. 91-97, 2001. [Iva.1]Ivanescu, D., Dion, J. M., Dugard, L., and Niculescu, S. I., “Dynamical compensation for time-delay systems: an LMI approach,” International Journal of Robust and Nonlinear Control, Vol. 10, pp. 611-628, 2000. [Jua.1]Juang, Y. T., Kuo, T. S., and Hsu, C. F., “Stability robustness analysis of digital control systems in state-space models,” International Journal of Control, Vol. 46, pp. 1547-1556, 1987. [Kam.1]Kamen, E. W., “Linear systems with commensurate time delays: stability and stabilization independent of delay,” IEEE Transactions on Automatic Control, Vol. 27, pp. 367-375, 1982. [Kim.1]Kim, J. H., “Delay and its time-derivative dependent robust stability of time-delayed linear systems with uncertainty,” IEEE Transactions on Automatic Control, Vol. 46, pp. 1547-1556, 2001. [Kol.1]Kolmanovskii, V. B. and Nosov, V. R., Stability of Functional Differential Equations, New York: Academic Press, 1986. [Kol.2]Kolmanovskii, V. B. and Myshkis, A., Applied Theory of Functional Differential Equations, New York: Kluwer Academic Publishers, 1992. [Kol.3]Kolmanovskii, V. B. and Myshkis, A., Introduction to the Theory and Applications of Functional Differential Equations, Dordrecht: Kluwer Academic Publishers, 1999. [Kol.4]Kolmanovskii, V. B. and Richard, J. P., “Stability of some linear systems with delays,” IEEE Transactions on Automatic Control, Vol. 44, pp. 984-989, 1999. [Kol.5]Kolmanovskii, V. B., Niculescu, S. I., and Richard, J. P., “On the Lyapunov-Krasovskii functionals for stability analysis of linear delay systems,” International Journal of Control, Vol. 72, pp. 374-384, 1999. [Kol.6]Kolmanovskii, V. B., Niculescu, S. I., and Gu, K., “Delay effects on stability: a survey,” in Proceedings 38th IEEE Coference on Decision and Control, Phoenix, USA, pp. 1993-1998, 1999. [Kua.1]Kuang, Y., Delay Differential Equations with Applications in Population Dynamics, Boston: Academic Press, 1993. [Kuo.1]Kuo, J. M., Lien, C. H., Fan, K. K., and Hsieh, J. G., “Delay-independent observer-based control for a class of neutral systems,” ASME Journal of Dynamic Systems, Measurement, and Control, to appear, 2004. [Kuo.2]Kuo, J. M., Lien, C. H., Fan, K. K., and Hsieh, J. G., “Observer-based control design for a class of neutral systems via LMI approach,” submitted to IEE Proceedings-Control Theory and Applications, 2003. [Kuo.3]Kuo, J. M., Lien, C. H., Fan, K. K., and Hsieh, J. G., “Delay-independent observer-based control design for a class of neutral systems with multiple time delays,” in ICICS2003, International Conference on Informatics, Cybernetics, and Systems, Kaohsiung, ROC, pp. 2018-2023, 2003. [Kuo.4]Kuo, J. M., Lien, C. H., Fan, K. K., and Hsieh, J. G., “Delay-dependent observer-based control design for a class of neutral systems with multiple time delays,” in ICICS2003, International Conference on Informatics, Cybernetics, and Systems, Kaohsiung, ROC, pp. 1752-1757, 2003. [Kuo.5]Kuo, J. M., Lien, C. H., Fan, K. K., and Hsieh, J. G., “Guaranteed-cost delay-independent observer-based control for a class of neutral systems,” CAC2004, 中華民國自動控制研討會, 彰化, ROC, paper no. C_01-02, 2004. [Lak.1]Laksmikantham, V. and Leela, S., Differential and Integral Inequalities, New York: Academic Press, 1969. [Li.1]Li, X. and de Souza, C. E., “Delay-dependent robust stability and stabilization of uncertain linear delay systems: a linear matrix inequality approach,” IEEE Transactions on Automatic Control, Vol. 42, pp. 1141-1148, 1997. [Lie.1]Lien, C. H., “Asymptotic criterion for neutral systems with multiple delays,” Electronics Letters, Vol. 35, pp. 850-852, 1999. [Lie.2]Lien, C. H. and Yu, K. W., and Hsieh, J. G., “Stability conditions for a class of neutral systems with multiple time delays,” Journal of Mathematical Analysis and Applications, Vol. 245, pp. 20-27, 2000. [Lie.3]Lien, C. H. and Chen, J. D., “Discrete-delay-independent and discrete-delay-dependent criteria for a class of neutral systems,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 125, pp. 33-41, 2003. [Lie.4]Lien, C. H., “New stability criterion for a class of uncertain nonlinear neutral time-delay systems,” International Journal of Systems Science, Vol. 32, pp. 215-219, 2001. [Liu.1]Liu, P. L. and Su, T. J., “Robust stability of interval time delay systems with delay dependence,” Systems & Control Letters, Vol. 33, pp. 231-239, 1998. [Lix.1]Liu, X. and Xu, D. Y., “Uniform asymptotic stability of abstract functional differential equations,” Journal of Mathematical Analysis and Applications, Vol. 216, pp. 626-643,1997. [Log.1]Logemann, H. and Pondolfi, L., “A note on stability and stabilizability of neutral systems,” IEEE Transactions on Automatic Control, Vol. 39, pp. 138-143, 1994. [Log.2]Logemann, H. and Townley, S., “The effect of small delays in the feedback loop on the stability of neutral systems,” Systems & Control Letters, Vol. 27, pp. 267-274, 1996. [Ma.1]Ma, W. B., Adachi, N, and Amemiya, T., “Delay-independent stabilization of uncertain linear systems of neutral type,” Journal of Optimization Theory and Applications, Vol. 84, pp. 393-405, 1995. [Mah.1]Mahmoud, M. S., “Robust control of linear neutral systems,” Automatica, Vol. 38, pp. 757-764, 2000. [Mah.2]Mahmoud, M. S., Robust Control and Filtering for Time-delay Systems, New York: Marcel Dekker, 2000. [Mal.1]Malek-Zavarei, M. and Jamshidi, M., Time-Delay Systems: Analysis, Optimization, and Applications, Amsterdam: North-Holland, 1987. [Mei.1]Meinsma, G., “Elementary proof of the Routh-Hurwitz test,” Systems & Control Letters, Vol. 25, pp. 237-242, 1995. [Nar.1]Narendra, K. S. and Taylor, J. H., Frequency Domain Criteria for Absolute Stability, New York: Academic Press, 1973. [Nia.1]Nian, X. and Feng, J., “Guaranteed-cost control of a linear uncertain system with time-varying delays: An LMI approach,” IEE Proceedings on Control Theory and Applications, Vol. 150, pp. 17-22, 2003. [Nic.1]Niculescu, S. I., Neto, A. T., Dion, J. M., and Dugard, L., “Delay-dependent stability of linear systems with delayed state: an LMI approach,” in Proceedings of the 34th IEEE Conference on Decision and Control, New Orleans, LA, Vol. 2, pp. 1495-1496, 1995. [Nic.2]Niculescu, S. I., “On delay dependent stability under model transformations of some neutral linear systems,” International Journal of Control, Vol. 74, pp. 609-617, 2001. [Nic.3]Niculescu, S. I. and Lozano, R., “On the passivity of linear delay systems,” IEEE Transactions on Automatic Control, Vol. 46, pp. 460-464, 2001. [O’Co.1]O’Connor, D. A. and Tarn, T. J., “On stabilization by feedback for neutral differential difference equations,” IEEE Transactions on Automatic Control, Vol. 28, pp. 615-618, 1983. [O’Co.2]O’Connor, D. A. and Tarn, T. J., “On the function space controllability of linear neutral systems,” SIAM Journal on Control and Optimization, Vol. 13, pp. 1334-1353, 1983. [Ouc.1]Oucheriah, S., “Measures of robustness for uncertain time-delay linear systems,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 117, pp. 633-635, 1995. [Ort.1]Ortega, J. M., Numerical Analysis, Academic Press, New York, 1972. [Pan.1]Pandolfi, L., “Stabilization of neutral functional differential equation,” Journal of Optimization Theory and Applications, Vol. 20, pp. 191-199, 1976. [Par.1]Park, J. H. and Won, S., “Asymptotic stability of neutral systems with multiple delays,” Journal of Optimization Theory and Applications, Vol. 103, pp. 183-200, 1999. [Par.2]Park, J. H. and Won, S., “Stability analysis for neutral delay-differential systems,” Journal of the Franklin Institute, Vol. 337, pp. 1-9, 2000. [Par.3]Park, J. K., Choi, C. H., and Choo, H. S., “Dynamic anti-windup method for a class of time-delay control systems with input saturation,” International Journal Robust and Nonlinear Control, Vol. 10, pp. 457-488, 2000. [Par.4]Park, J. H., “A new delay-dependent criterion for neutral systems with multiple delays,” Journal of Computational and Applied Mathematics, Vol. 136, pp. 177-184, 2001. [Par.5]Park, J. H., “Robust guaranteed cost control for uncertain linear differential systems of neutral type,” Applied Mathematics and Computation, Vol. 140, pp. 523-535, 2003. [Pea.1]Pearson, A. E. and Fiagbedzi, Y. A., “An observer for time lag systems,” IEEE Transactions on Automatic Control, Vol. 34, pp. 775-777, 1989. [Sal.1]Salamon, D., “Observers and duality between observation and state feedback for time-delay systems,” IEEE Transactions on Automatic Control, Vol. 25, pp. 1187-1192, 1980. [Sal.2]Salamon, D., On Control and Observation of Neutral Systems, London: Pitman Advanced Publishing, 1984. [Ste.1]Stepan, G., Retarded Dynamical Systems: Stability and Characteristic Functions, Essex: Longman Scientific & Technical, 1989. [Su.1]Su, T. J. Kuo, T. S., and Sun, Y. Y., “Robust stability for linear time-delay systems with linear parameter perturbation,” International Journal of Systems Science, Vol. 19, pp. 2123-2129, 1988. [Suj.1]Su, J. H., “Further results on the robust stability of linear systems with a single time delay,” Systems & Control Letters, Vol. 23, pp. 375-379, 1994. [Tar.1]Tarn, T. J., Yang, T., Zeng, X., and Guo, C., “Periodic output feedback stabilization of neutral systems,” IEEE Transactions on Automatic Control, Vol. 41, pp. 511-521, 1996. [Tho.1]Thowsen, A., “The Routh-Hurwitz method for stability determination of linear differential-difference systems,” International Journal of Control, Vol. 33, pp. 991-995, 1981. [Tho.2]Thowsen, A., “Uniform ultimate boundness of the solutions of uncertain dynamic delay systems with state-dependent and memoryless feedback control,” International Journal of Control, Vol. 37, pp. 1133-1143, 1983. [Tis.1]Tissir, E. and Hmamed, A.,”Stability tests of interval time delay systems,” Systems & Control Letters, Vol. 23, pp. 263-270, 1994. [Tri.1]Trinh, H. and Aldeen, M., “An asymptotic model observer for linear autonomous time lag systems,” IEEE Transactions on Automatic Control, Vol. 42, pp. 742-745, 1997. [Tri.2]Trinh, H., “Linear functional state observer for time-delay systems,” International Journal of Control, Vol. 72, pp. 1642-1658, 1999. [Ver.1]Verriest, E. I., Fan, M. K. H., and Kullstam, J., “Frequency domain robust stability criteria for linear delay systems,” in Proceedings 32nd IEEE Coference on Decision and Control, San Antonio, USA, pp. 3473-3478, 1993. [Vid.1]Vidyasagar, M., Nonlinear System Analysis, New York: Prentice-Hall, 1978. [Wan.1]Wang, Z., Lam, J., and Burnham, K. J., “Stability analysis and observer design for neutral delay systems,” IEEE Transactions on Automatic Control, Vol. 47, pp. 478-483, 2002. [Wat.1]Watanabe, K., “Finite spectrum assignment and observer for multivariable systems with commensurate delays,” IEEE Transactions on Automatic Control, Vol. 31, pp. 543-550, 1986. [Wu.1]Wu, H. S. and Mizukami, K., “Robust stabilization of uncertain linear dynamical systems with time-varying delay,” Journal of Optimization Theory and Applications, Vol. 82, pp. 593-606, 1994. [Xu.1]Xu, S. Y., Lam, J., and Yang, C. W., “ and positive-real control for linear neutral delay systems,” IEEE Transactions on Automatic Control, Vol. 46, pp. 1321-1326, 2001. [Yan.1]Yanushevsky, R. T., “Optimal control of linear differential-difference systems of neutral type,” International Journal of Control, Vol. 49, pp. 1835-1850, 1989. [Yan.2]Yanushevsky, R. T., “On robust stabilizability of linear differential-difference systems with unstable D-operator,” IEEE Transactions on Automatic Control, Vol. 37, pp. 652-653, 1992. [Yjj.1]Yan, J. J., “Robust stability analysis of uncertain time delay systems with delay-dependence,” Electronics Letters, Vol. 37, pp. 135-137,2001. [Zha.1]Zhang, J., Knopse, C. R., and Tsiotras, P., “Stability of time-delay systems: equivalence between Lyapunov and scaled small-gain conditions,” IEEE Transactions on Automatic Control, Vol. 46, pp. 482-486, 2001. [Zho.1]Zhou, K. and Doyle, J. C., Essentials of Robust Control, New Jersey: Prentice Hall, 1998. [Zit.1]Zitek, P., “Anisochronic state observers for hereditary systems,” International Journal of Control, Vol. 71, pp. 581-599, 1998.
|