跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/05 17:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:范揚鑫
研究生(外文):Yang-Xing Fan
論文名稱:ADI-FDTD法應用於平面型電路之研究
論文名稱(外文):Application of the ADI-FDTD Method to Planar Circuits
指導教授:郭志文郭志文引用關係
指導教授(外文):Chih-Wen Kuo
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:61
中文關鍵詞:ADI演算法時域有限差分等效電流源
外文關鍵詞:Alternating Direction Implicit (ADI) MethodFinite-Difference Time DomainEquivalent Current Source
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
時域有限差分法(Finite-Difference Time Domain, FDTD)是一種解決電磁問題非常有效的數值方法,然而此傳統的FDTD法屬於Explicit型式的差分方程式,它必需滿足Courant-Friedrich-Levy(CFL)穩定準則,因此最大時間步階被最小網格尺寸所限制,如果模擬的結構網格尺寸的比較細時,一個小的最大時間步階將使得計算時間變長。

Alternating-Direction Implicit(ADI)法是Implicit型式的差分方程式,因為此演算法為無條件穩定,可以選擇任意的時間步階以改善計算時間。ADI-FDTD是將ADI法與FDTD法做結合,它可以克服穩定準則的限制。本論文中我們將集總元件法和等效電流源法與ADI-FDTD結合使用,用它來模擬主或被動元件,使得這個方法的應用更為廣泛。
The Finite-Difference Time Domain (FDTD) method is a very useful numerical simulation technique for solving problems related to electromagnetism. However, as the traditional FDTD method is based on an explicit finite-difference algorithm, the Courant-Friedrich-Levy(CFL) stability condition must be satisfied when this method is used. Therefore, a maximum time-step size is limited by minimum cell size in a computational domain, which means that if an object of analysis has fine scale dimensions, a small time-step size creates a significant increase in calculation time.

Alternating-Direction Implicit (ADI) method is based on an implicit finite-difference algorithm. Since this method is unconditionally stable, it can improve calculation time by choosing time-step arbitrarily. The ADI-FDTD is based on an Alternating direction implicit technique and the traditional FDTD algorithm. The new method can circumvent the stability constraint. In this thesis, we incorporate Lumped Element and Equivalent Current Source method into the ADI-FDTD. By using them to simulate active or passive device, the application of method will be more widely.
目錄.....................................................Ⅰ
圖表目錄.................................................Ⅲ
第一章 序論..............................................1
1.1 研究背景.........................................1
1.2 論文大綱.........................................2
第二章 FDTD演算法........................................3
2.1 FDTD之公式推導.................................. 3
2.2 Courant穩定準則..................................7
2.3 激發源...........................................7
2.3.1 取代源...........................................8
2.3.2 附加源...........................................8
2.3.3 阻抗性電壓源.....................................8
2.4 吸收邊界條件.....................................9
2.4.1 Mur一階吸收界...................................10
2.5 非均勻網格之時域有限差分法......................11
2.5.1 理論............................................11
第三章 ADI-FDTD演算法...................................14
3.1 介紹............................................14
3.2 Explicit與 Implicit.............................14
3.2.1 Explicit方法.....................................14
3.2.2 Implicit方法.....................................17
3.2.3 Alternating-Direction Implicit(ADI)方法..........18
3.3 ADI-FDTD公式........................................20
3.4 ADI-FDTD穩定度分析..................................25
3.5 2D TE wave ADI-FDTD的模擬............................27
3.6 3D微帶線濾波器ADI-FDTD的模擬........................29
第四辛 集總電路元件的模擬...............................32
4.1 集總元件演算法..................................32
4.1.1 阻抗性電壓源....................................33
4.1.2 模擬矩形微帶天線................................35
4.1.3 電阻............................................36
4.1.4 電容............................................37
4.1.5 電感............................................38
4.1.6 模擬低通濾波器..................................40
4.2 等效電流源法....................................41
4.3 等效電流源法的應用..............................44
4.3.1 蕭基二極體......................................44
4.3.2 小訊號微波放大器................................48
第五章 非均勻網格的應用.................................54
5.1 2D TE mode.....................................54
5.2 微帶線的模擬....................................56
第六章 結論.............................................59
參考文獻.................................................60
[1] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media,” IEEE Trans. Antennas Propagat., vol.14, No.3, pp.300-307, May 1966.

[2] A. Taflove, Computational Electrodynamics The Finite-Difference Time-Domain Method, 1995.

[3] T. Namiki, “A new FDTD algorithm based on alternating direction implicit method,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 2003–2007,Oct.1999.

[4] T. Namiki, “3-D ADI-FDTD Method-Unconditionally Stable Time-Domain Algor-
ithm for Solving Full Vector Maxwell’s Equations,” IEEE Trans. Microwave Theory Tech., vol. 48, NO.10, pp.1743-1748,Oct.2000.

[5] Fenghua Zeng , Zhizhang Chen and Jiazong Zhang , “Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method,” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 1550–1558,Sep.2000.

[6] M. P. May , A. Taflove , and J. Baron , “FD-TD Modeling of Digital Signal Propagation in 3-D Circuits with Passive and Active Loads ,” IEEE Transactions on Microwave Theory and Techniques , vol. 42 , No. 8 ,pp.1514-1523, August 1994 .

[7] Chien-Nan Kuo , Bijan Houshmand , and Tatsuo Itoh ,”FDTD analysis of active circuits with equivalent current source approach , ” in 1995 IEEE AP-S Int. Symp. Dig. , Newport Beach , CA , June 1995 , pp. 1510-1513 .

[8] D. M. Sheen , S. M. Ali , M. D. Abouzahra and J. A. Kong ,“Application of the three-dimensional finite-difference time-domain method to the analysis of plannar microstrip circuits ,” IEEE Trans. Microwave Theory Tech. , vol. 38 , pp. 849-857 , July 1990.

[9] An Ping Zhao, Raisanen, A.V., Cvetkovic, S.R.,” A fast and efficient FDTD algorithm for the analysis of planar microstrip discontinuities by using a simple source excitation scheme,” Microwave and Guided Wave Letters, IEEE [see also IEEE Microwave and Wireless Components Letters] , Volume: 5 , Issue: 10 , Oct. 1995 ,Pages:341 – 343

[10] G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations,” Electromagnetic Compatibility, IEEE Transactions on Volume: 23 ,pp. 377 –382,Nov 1981.

[11] R. Holland, “ Implicit three-dimensional finite difference of Maxwell’s equations,” IEEE Trans. Nucl. Sci., vol. NS-31, pp. 1322-1326, 1984.

[12] M. Necati Őzişik, Finite Difference Methods in Heat Transfer, 1994.

[13] An Ping Zhao, “Two special notes on the implementation of the unconditionally stable adi-fdtd method,” Microwave and Optical Technology Letters,vol.33,No.4,
May 20 2002.

[14] An Ping Zhao,” Analysis of the numerical dispersion of the 2D alternating-direction implicit FDTD method,” Microwave Theory and Techniques, IEEE Transactions on , Volume: 50 , Issue: 4 , April 2002.

[15] Tae-Woo Lee, Hagness, S.C. , “Wave source conditions for the unconditionally stable ADI-FDTD method,” Antennas and Propagation Society, 2001 IEEE International Sym , Volume: 4 , pp. 142 -145 ,8-13 July 2001.

[16] Jeongnam Cheon, Sooji Uh, Hyunsik Park, Hyeongdong Kim,” Analysis of the power plane resonance using the alternating-direction implicit (ADI) FDTD method,” Antennas and Propagation Society International Symposium, 2002. IEEE , Volume: 3 , 16-21 June 2002 Pages:647 – 650.

[17] V. S Reddy, R. Garg, “An improved extended FDTD formulation for active microwave circuits,” Microwave Theory and Techniques, IEEE Transactions on , Volume: 47 Issue: 9 , Sep 1999.

[18] 吳柏樟 , 應用時域有限差分法模擬主/被動元件 , 中山大學碩士論文 ,
2003.

[19] T.Namiki, and K.Ito,“Investigation of numerical errors of the two dimensional ADI–FDTD method,” Microwave Theory and Techniques, IEEE Transactions on , Volume: 48 , Issue: 11 ,pp. 1950 - 1956, Nov. 2000
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top