跳到主要內容

臺灣博碩士論文加值系統

(3.229.137.68) 您好!臺灣時間:2021/07/25 18:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:余嘉洺
研究生(外文):Chia-ming Yu
論文名稱:液相沉積鋇摻雜鈦矽氧化膜應用於次世代閘極氧化層
論文名稱(外文):Barium Doped Titanium Silicon Oxide Films by Liquid Phase Deposition for Next Generation Gate Oxide
指導教授:李明逵
指導教授(外文):Ming-kwei Lee
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:82
中文關鍵詞:液相沉積法鈦矽氧化膜熱退火
外文關鍵詞:LPDTitanium Silicon Oxidethermal annealing
相關次數:
  • 被引用被引用:1
  • 點閱點閱:96
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
根據2003美國半導體技術藍圖,西元2006年時MOSFET的閘極氧化層氮氧化物在等效氧化層厚度低於2 nm時將因穿隧效應造成閘極漏電流過大,而導致元件無法操作,因此利用高介電係數材料替代氮氧化物作為閘極氧化層可增加厚度進而降低漏電流成為解決此問題的途徑。
鈦矽氧化膜具有高介電係數、低漏電流、與矽基板介面良好等特性,可應用在矽製程中電晶體的閘極氧化層與記憶體DRAM的介電層。此外,先前的研究指出,鋇的摻雜可以提高薄膜的介電係數。所以,本實驗發展出一種新的薄膜材料稱為鋇摻雜之鈦矽氧化膜。藉由各種特性量測,發現該薄膜具有高介電係數、低漏電流等特性,相較於鈦矽氧化膜在介電方面有更高的應用價值。
本實驗主旨在研究以鋇摻雜之鈦矽氧化膜作為高介電係數材料的物性、化性及電性之表現。利用液相沉積法(LPD)在p-type (100)之矽基板上成長鋇摻雜之鈦矽氧化膜,其過程簡單、成本低廉、而且成長溫度低(40°C),因此值得廣泛研究和發展。對於物性與化性方面,我們利用掃描式電子顯微鏡(SEM)、反射式光譜儀、二次離子質譜儀(SIMS)、傅立葉紅外線光譜儀(FTIR)與X光繞射儀(XRD)分析,並製作MOS之電容結構以量測其介電特性,並針對鋇摻雜之鈦矽氧化膜之漏電流密度與介電常數等與製程參數之關係加以研究探討。
在本實驗中,以液相沉積法成長鋇摻雜之鈦矽氧化膜在經由氧氣熱退火後,其等效二氧化矽厚度為1.27 nm(介電係數約為22.3),在5 MV/cm電場強度下漏電流密度為2.6 × 10-6 A/cm2 。由本實驗結果顯示,鋇摻雜鈦矽氧化膜於介電應用上具有高發展性。
The area of advanced gate dielectrics has gained considerable attention recently because semiconductor technology roadmaps predict for less than 2 nm equivalent oxide thickness (EOT) for next 10 years, and there are significant leakage current and reliability concerns for oxy-nitride in this regime. So it’s an important business to use alternate high-k dielectrics instead of oxy-nitride.
Titanium silicon oxide shows a low leakage current with a high dielectric constant for dielectric applications. Besides, barium doping can create additional oxygen vacancies that can enhance dielectric constant. In this study, we prepared barium doped titanium silicon by liquid phase deposition which is a novel material considered to have intermediate properties of silicon dioxide and titanium dioxide. From several characteristic measurements, we found that barium doped titanium silicon oxide with exhibiting higher dielectric constant, low leakage current and well interface state which is very promising candidates to instead of titanium silicon oxide.
The physical and chemical properties of barium doped titanium silicon oxide films by means of several measuring instruments, including Fourier transform infrared spectrometer (FTIR), secondary ion spectrometer (SIMS), and X-Ray diffractometer (XRD). An Al / Ba doped titanium silicon oxide / Si metal-oxide-semiconductor (MOS) capacitor structure was used for the electrical measurements.
The static dielectric constant of the O2-annealed barium doped titanium silicon oxide film can reach about 22.3. In addition, it has well leakage current density of 2.6 × 10-6 A/cm2 at 5 MV/cm with the equivalent oxide thickness 1.27 nm (optical thickness of 7.3 nm). It has high potential for dielectric applications.
1.INTRODUCTION.............................................1
1-1 Direct Tunneling Effect of Oxide Layer.................1
1-2 Logic Technology Requirements..........................2
1-3 High Dielectric Constant Materials.....................4
1-4 Advantages of Liquid Phase Deposition..................5
1-5 Motivation.............................................6

2.EXPERIMENTS..............................................8
2-1 Deposition System......................................8
2-2 Cleaning of Silicon Substrate.........................9
2-3 Preparation of Deposition Solution....................10
2-4 Film Deposition.......................................11
2-5 Characteristics.......................................12
2-5-1 Physical Properties.................................12
2-5-2 Chemical Properties.................................13
2-5-3 Electrical Properties...............................13

3.RESULTS AND DISCUSSION.................................16
3-1 Chemical Equilibrium of Ba Doped LPD-TixSi(1-x)Oy Films.....................................................17
3-2 Physical Properties of As-deposited Ba Doped TixSi(1-x)Oy Films..................................................18
3-2-1 Structure of Ba doped TixSi(1-x)Oy Film.............18
3-2-2 Deposition Rate and Refractive Index as a Function of Ba(NO3)2 Molarity in Deposition Solution..............19
3-2-3 SEM Cross-sectional View and Top View of Ba Doped TixSi(1-x)Oy Film on Silicon Substrate....................19
3-3 Chemical Properties of As-deposited Ba Doped TixSi(1-x)Oy Films..................................................20
3-3-1 SIMS Depth Profile of Ba Doped TixSi(1-x)Oy Film....20
3-3-2 FTIR Spectra of Ba Doped TixSi(1-x)Oy Films.........21
3-4 Electrical Properties of As-deposited Ba Doped TixSi(1-x)Oy Films................................................21
3-4-1 Current-Voltage (I-V) Measurement...................22
3-4-2 Capacitance-Voltage (C-V) Measurement...............22
3-5 Characteristics of Post-annealed Ba Doped TixSi(1-x)Oy Film......................................................24
3-5-1 X-ray Diffraction Pattern of Ba Doped TixSi(1-x)Oy Films by Annealing in O2 Ambient..........................25
3-5-2 FTIR Spectra of As-deposited and Post-annealed Ba Doped TixSi(1-x)Oy Films..................................25
3-5-3 Thicknesses of As-deposited and Post-annealed Ba Doped TixSi(1-x)Oy Films..................................25
3-5-4 Improvement of Electrical Properties by Annealing...26
3-6 Characteristics of Thin Ba Doped TixSi(1-x)Oy Film....29
3-6-1 X-ray Diffraction and FTIR Analysis of Thin Ba Doped TixSi(1-x)Oy Films........................................29
3-6-2 Electrical Properties of Thin Ba Doped TixSi(1-x)Oy Films by Annealing in N2 Ambient..........................30
3-6-3 Electrical Properties of Thin Ba Doped TixSi(1-x)Oy Films by Annealing in N2O Ambient.........................31
3-6-4 Electrical Properties of Thin Ba Doped TixSi(1-x)Oy Films by Annealing in O2 Ambient..........................32
3-6-5 Ba Doped TixSi(1-x)Oy Films by O2-Annealed at 500, 600 and 700 ºC (2 min deposited).........................33
3-6-6 Ba Doped TixSi(1-x)Oy Films by O2-Annealed at 500, 600 and 700 ºC (3 min deposited).........................35

4.CONCLUSIONS.............................................37

FIGURES................................................39~76
TABLES.................................................77~78
REFERENCES.............................................79~82
[1] Yuan Taur, Tak H. Ning, Fundamentals of Modern VLSI Devices, p.96, 1998.
[2] K. J. Hubbard and D. G. Schlom, “Thermodynamic Stability of Binary Oxides in Contact with Silicon,” J. Materials Research, vol. 11, pp. 2757-2776, 1996.
[3] THE INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS: 2003.
[4] R. M. Wallace, University of North Texas.
[5] Jack C. Lee, “Ultra-thin gate dielectrics and High-k dielectrics,” IEEE EDS vanguard series of independent short courses.
[6] J. D. Deloach, G. Scarel, and C. R. Aita, “Correlation between titania film structure and near ultraviolet optical absorption,” J. Appl. Phys., vol. 85, pp. 2377-2384, 1999.
[7] H. Tang, K.Prasad, R. Sanjinès, P. E. Schmid, and F. Lévy, “Electrical and optical properties of TiO2 anatase thin films,” J. Appl. Phys., vol. 75, pp. 2042-2047, 1994.
[8] X. H. XU, M. WANG, Y. HOU, et al., “Effect of Thermal Annealing on Structural Properties, Morphologies and Electrical Properties of TiO2 Thin Films Grown by MOCVD,” Cryst. Res. Technol., vol. 37, pp. 431-439, 2002.
[9] J. M. Wu and C. J. Chen, “Dielectric properties of (Ba, Nb) doped TiO2 ceramics: Migration mechanism and roles of (Ba, Nb),” J. Mater. Science., vol. 23, pp. 4157-4164, 1988.
[10] J. J. Cheng and J. M. Wu, “Effect of Powder Characteristics on Electrical Properties of (Ba, Bi, Nb)-Added TiO2 Ceramics,” Jpn. J. Appl. Phys., vol. 35, pp.4704-4710, 1996.
[11] Takesshi Kamada, Masatoshi Kitagawa, Munehiro Shibuya and Takashi Hirao, “Structure and Properties of silicon Titanium Oxide Films Prepared by Plasma-Enhanced Chemical Vapor Deposition Method,” Jpn. J. Appl. Phys., vol. 30, pp. 3594-3596, 1991.
[12] D. K. Sarkar, E. Desbiens, and M. A. El Khakani, “High-k titanium silicate dielectric thin films grown by pulsed-laser deposition,” Appl. Phys. Lett., vol. 80, pp.294-296, 2002.
[13] X. Wang, H. Masumoto, Y. Someno, and T. Hirai, “Helicon plasma deposition of a TiO2/SiO2 multilayer optical filter with graded refractive index profiles,” Appl. Phys. Lett., vol. 72, pp. 3264-3266, 1998.
[14] Jenq-Shiuh Chou and Si-Chen Lee, “The Initial Growth Mechanism of Silicon Oxide by Liquid-Phase Deposition,” J. Electrochem. Soc., vol. 141, pp. 3214-3218, 1994.
[15] M. K. Lee, C. M. Shih, W. H. Shieh, “Characteristics and growth mechanisms of TixSi(1-x)Oy films by liquid phase deposition,” Appl. Phys. A, vol. 74, pp. 249-251, 2002.
[16] D. R. Turner, “On the Mechanism of Chemically Etching Germanium and Silicon,” J. ELECTROCHEM. SOC., vol. 107, pp. 810-816, 1960.
[17] S. K. Ghandhi, “Etching and Cleaning,” VLSI Fabrication Principles (2nd ed.), Wiley Interscience, New York, 1994.
[18] Raymond Chang, “Chapter 4: 4.4 Concentration and Dilution of Solutions,” Chemisty (fifth edition), p. 136, McGraw-Hill, New York, 1994.
[19] David R. Lide, “Aqueous Solubility of Inorganic Compounds at Various Temperature,” HANDBOOK of CHEMISTRY and PHYSISC, 80th, CRC Press, vol. 8, pp. 103, 1999-2000.
[20] M. K. Lee, K. W. Tung, C. C. Cheng, H. C. Liao, and C. M. Shih, “Deposition of Barium Titanate Films on Silicon by Barium Fluotitanate Powder,” J. Phys. Chem. B, vol. 106, pp. 4963-4966, 2002.
[21] T. Homma, T. Katoh, Y. Yamada and Y. Murao, “A Selective SiO2 Film-Formation Technology Using Liquid-Phase Deposition for Fully Planarized Multilevel Interconnections,” J. Electrochem. Soc., vol. 140, pp. 2410-2413, 1993.
[22] M. K. Lee, C. H. Lin, C. N. Yang, and C. D. Yang, “The Improvement of Liquid Phase Deposition of Silicon Dioxide with Hydrochloric Acid Incorporation,” Jpn. J. Appl. Phys., vol. 37, pp. L682-L683, 1998.
[23] V. G. Erkov, S. F. Devyatova, E. L. Molodstova, T. V. Malsteva, U. A. Yanovskii, “Si-TiO2 interface evolution at prolonged annealing in low vacuum or N2O ambient,” Appl. Surf. Sci., vol. 166, pp. 51-56, 2000.
[24] Y. Gao, “In-situ IR and spectroscopic ellipsometric analysis of growth process and structural properties of Ti1-xNbxO2 thin films by metal-organic chemical vapor deposition,” Thin Solid Films, vol. 346, pp. 73-81, 1999.
[25] N. M. Laptash, O. G. Maslennikova, Y. a. Kaidalova, “ammonium Oxofluorotitanates,” H. Fluo. Chem., vol. 99, pp. 133-137, 1999.
[26] P. Madhu Kumar, S. Badrinarayanan, Murali Sastry, “Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states,” Thin Solid Films, vol. 358, pp. 122-130, 2000.
[27] J. J. Cheng and D. W. Wang, “Structure Transformation of the TiO2-SiO2 System Gel During Heat-treatment”, J. Non-cryst. Sol., vol. 100, pp.288-291, 1988.
[28] X. Orignac, R. M. Almeda, “Silica-based sol-gel optical wave guides on silicon,” IEE Proceedings-Optoelectronics, vol. 143, pp. 287-292, 1996.
[29] P. Lange, H. Bernt, E. Hartmannsgruber, and F. Naumann, “Growth Rate and Characterization of Silicon Oxide Films Grown in N2O Atmosphere in a Rapid Thermal Processor,” J. Electrochem. Soc., vol. 141, pp. 259-263, 1994.
[30] W. A. Pliskin, "Comparison of properties of dielectric films deposited by various methods," J. Vac.Sci. Technol., vol. 41, pp. 1064-1081, 1977.
[31] Byung-chang Kang, Soon-Bo Lee, Jin-Hyo Boo, “Growth of TiO2 thin films on Si(100) substrates using single molecular precursors by metal organic chemical vapor deposition,” Surface and Coatings Technology, vol. 131, pp. 88-92, 2000.
[32] Jurgen R. Meyer-Arendt, Introduction to Classic and Modern Optics, Prentice-Hall (1972).
[33] Yoon-Hae Kim, Moo Sung Hwang, Hyeong Joon Kim, Jin Yong Kim and Young Lee, “Infrared spectroscopy study of low-dielectric-constant fluorine-incorporated and carbon-incorporated silicon oxide films” J.Appl. Phys., vol. 90, pp.3367-3370, 2001.
[34] V. Mikhelashvili and G. Eisenstein, “Optical and electrical characterization of the electron beam gun evaporated TiO2 film,” Microelectronics Reliability, vol. 41, pp. 1057-1061, 2001.
[35] CHENG Ji-Jian, and WANG Dong-Wei, “STRUCTURAL TRANSFORMATION OF THE TiO2-SiO2 SYSTEM GEL DURING HEAT-TREATMENT,” Journal of Non-Crystalline Soids, vol. 100, pp.288-291, 1988.
[36] Hyunjung Shin, Mark R. De Guire and Arthur H. Heuer, “Electrical properties of TiO2 thin films formed on self-assembled organic monolayers on silicon”, J. Appl. Phys., vol. 83, pp. 3311-3317, 1998
[37] S. Wolf and R. N. Tauber, “Silicon Processing for The VLSI Era,” vol. 1, Lattice Press, p. 57, 1986.
[38] D. L. Heald, R. M. Das, et al., J. Elactrochem. Soc., vol. 123, p. 302, 1976.
[39] L. C. Parrillo, “VLSI Process Integration,” in VLSI technology (2nd ed.) (S.M. Sze, eds) McGrow-Hill, New York, 1988.
[40] Dong Heon Lee, Yong Soo Cho, Woul In Yi, et al., "Metalorganic chemical vapor deposition of TiO2:N anatase thin film on Si substrate," Appl. phys. Lett., vol. 66, pp.815-816, 1995.
[41] S. C. Sun and T. F. Chen, “Effects of Electrode Materials and Annealing Ambients on the Electrical Properties of TiO2 Thin Films by Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys., vol. 36, pp.1346-1350, 1997.
[42] Wei-Shin Lu, Jenn-Gwo Hwu, “Reliable fluorinated thin gate oxides propared by liquid phase deposition following rapid thermal process,” IEEE Electron Device Lett., vol. 17, pp.172-174, 1996.
[43] Liwei Fu, Kun Liu, Bo Zhang, Junhao Chu, Hong Wang and Min Wang, “Capacitance-voltage characteristics of Bi4Ti3O12/p-Si interface”, Appl. Phys. Lett., vol. 72, pp. 1784-1786, 1998.
[44] Hisashi Fukuda, Seigo Namioka, Miho Miura, Yoshihiro Ishikawa, Masaki Yoshino and Shigeru Nomura, “Structural and Electrical Properties of Crystalline TiO2 Thin Films Formed by Metalorganic Decomposition,” Jpn. J. Appl. Phys., vol. 38, pp. 6034-6038, 1999.
[45] Masaru Kadoshima, Masahiko Hiratani, Yasuhiro Shimamoto, Kazuyoshi Torii, Hiroshi Miki, Shinichiro Kimura, Toshihide Nabatame, “Rutile-type TiO2 thin film for high-k gate insulator,” Thin Solid Films, vol. 424, pp.224-228, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top