跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/08/04 06:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:馬暉麟
研究生(外文):Hui-Lin Ma
論文名稱:多層基板電感與電容元件模型資料庫之建立
論文名稱(外文):Establishment of Model Library for Inductors and Capacitors in Multilayer Substrate Structure
指導教授:洪子聖洪子聖引用關係
指導教授(外文):Tzyy-Sheng Horng
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:87
中文關鍵詞:多層基板電磁場模擬元件模型化資料庫
外文關鍵詞:Device Modeling LibraryElectrical Magnetic SimulationMultilayer Substrate Structure
相關次數:
  • 被引用被引用:2
  • 點閱點閱:177
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文在前半部提出一個建立被動元件資料庫的標準流程,即先針對元件在所應用範圍內的電氣特性需求並將其等效電路模型化,再經由電磁模擬設計輔以量測驗證,最後建立出模擬與量測符合一致性的元件資料庫。另外在所建立的完整自動化模型參數萃取程式中,除了可迅速將元件量測或模擬的散射參數以等效電路 模型呈現出來外,更包括了諧振頻率、品質因子與模型化誤差的計算。
最後更以此流程,全面建構一符合現今模組設計趨勢的LTCC製程之電感與電容元件資料庫,並更提出在多層基板模組實現中內埋式電感與電容元件的最佳電氣特性表現之重要設計方法。
In this thesis, a standard flow path is proposed to establish the model library for inductors and capacitors in multilayer substrate structure. By the way of excellent agreement between simulation and measurement within self resonant frequency (SRF), we aimed at the demanded performance of passives in modules and adopted Pi-section equivalent circuits as basic model. Meanwhile, an automatic program on CAD-based platform is used for extraction of Pi-model circuit elements and calculation of SRF, quality (Q)factor and modeling errors.
In the end, we contributed the methodology to have the best performance of embedded passives design in multilayer substrate structure and established a completed model library for inductors and capacitors embedded in low temperature co-fired ceramic(LTCC)substrate for the design need in implementation of RF modules.
目錄
圖表目錄
第一章 緒論
第二章 多層基板結構中電感與電容元件之電磁模擬與晶圓級量測
2.1 簡介
2.2 準靜態電磁模擬軟體Spicelink的應用
2.2.1 電感、電容、與電阻矩陣的定義
� 2.2.2 準靜態電磁模擬模擬電感與電容器PI等效電路
電抗性元件值的方法
2.2.3 各式電感與電容器的PI等效電路電抗性元件值
準靜態電磁模擬實例
2.3 三維空間全波分析電磁場模擬軟體HFSS的應用
2.4 考量晶圓級量測效應之電感與電容元件設計與模擬
第三章 多層基板結構中內埋式電感與電容元件模型化電路之建立
3.1 簡介
3.2 PI模型等效電路的建立
3.2.1 PI-a型等效電路
3.2.2 PI-b型等效電路
3.2.3 PI型等效電路之損耗模型考量
3.3 PI型等效電路模型建立之實例說明與比較
3.3.1 電感器實例
3.3.2 電容器實例
第四章 LTCC製程之內埋式電感與電容元件設計與資料庫的建立
4.1 簡介
4.2 內埋式電感與電容器的設計與分析
4.2.1 內埋式電感器模型資料庫
4.2.2 內埋式電感器的設計評量
4.2.3 內埋式電容器模型資料庫
4.2.4 內埋式電容器的設計評量
第五章 結論
參考文獻
附錄一
附錄二
[1] A. Sutono, D. Heo, Y.-J.E. Chen, and J. Laskar, “High-Q LTCC-based passive library for wireless system-on-package (SOP) module development,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 1715-1724, Oct. 2001.
[2] S. Chakraborty, K. Lim, A. Sutono, E. Chen, S. Yoo, A. Obatoyinbo, and J. Laskar, “Development of an integrated Bluetooth RF transceiver module using multi-layer system on package technology,” in Proc. 2001 Radio and Wireless Conf., 2001, pp. 117-120.
[3] M. F. Davis, A. Sutono, S.-W. Yoon, S. Mandal, N. Bushyager, C.-H. Lee, K. Lim, S. Pinel, M. Maeng, A. Obatoyinbo, S. Chakraborty, J. Laskar, and R. R. Tummala, “Integrated RF architectures in fully-organic SOP technology,” IEEE Trans. Adv. Packg., vol. 25, pp. 136-142, May 2002.
[4] L. Kyutae, S. Pinel, M. Davis, A. Sutono, L. H. Chang, H. Deukhyoun, A. Obatoynbo, J. Laskar, and R. Tummala, “ RF-system-on-package (SOP) for wireless communications,” IEEE Microwave Magazine, vol. 3, pp. 88-99, March 2002.
[5] S. Chakraborty, K. Lim, A. Sutono, E. Chen, S. Yoo, A. Obatoyinbo, S.–W. Yoon, M. Maeng, M. F. Davis, S. Pinel, and J. Laskar, “A 2.4-GHz radio front end in RF system-on-package technology,” IEEE Microwave Magazine, vol. 3, pp. 94-104, June 2002.
[6] L. Zhao, A. Pavio, and W. Thompson, “A 1 watt, 3.2 vdc, high efficiency distributed power PHEMT amplifier fabricated using LTCC technology,” in IEEE MTT-S Int. Microwave Symp. Dig., 2001, pp. 2201-2204.
[7]D. Heo, A. Sutono, E. Chen, E. Gebara, S. Yoo, Y. Suh, J. Laskar, E. Dalton, and E. M. Tentzeris, “A high efficiency 0.25 μm CMOS PA with LTCC multi-layer high-Q integrated passives for 2.4 GHz ISM band,” in IEEE MTT-S Int. Microwave Symp. Dig., 2001, pp. 915-918.

[8]D. Heo, A. Sutono, E. Chen, Y. Suh, and J. Laskar, “A 1.9-GHz DECT CMOS power amplifier with fully integrated multilayer LTCC passives,” IEEE Microwave and Wireless Components Lett., vol. 11, pp. 249-251, June 2001.
[9] S.-H. Cheng, K.-K. M. Cheng, and K.-L. Wu, “Low phase-noise integrated voltage controlled oscillator design using LTCC technology,” IEEE Microwave and Wireless Components Lett., vol. 13, pp. 329-331, Aug. 2003.
[10] S. Pinel, C.-H. Lee, S.-W. Yoon, S. Nuttinck, K. Lim, and J. Laskar, “Embedded IC and high-Q passives technology for ultra-compact Ku-band VCO module,” IEEE Microwave and Wireless Components Lett., vol. 14, pp. 80-82, Feb. 2004.
[11] K. Kunibiro, S. Yamanouchi, H. Dodo, T. Miyazaki, N. Hayam, M. Fujii, Y. Aoki, Y. Takahashi, K. Numata, K. Haraguchi, T. Ohtsuka, K. Ikuina, and H. Hida, “A 0.08-cc fully integrated LTCC transceiver front-end module for 5-GHz wireless LAN systems,” in Proc. Radio and Wireless Conf., 2003, pp. 357-360.
[12] Ansoft HFSS Engineering Note, Ansoft Corporation, 2002.
[13] Ansoft Spicelink Engineering Note, Ansoft Corporation, 2002.
[14] Scott A. Wartenberg, RF Measurements of Die and Packages. Boston: Artech House, 2003.
[15] Ansoft Ensemble Engineering Note, Ansoft Corporation, 1998.
[16] D. K. Chen, Fundamentals of Engineering Electronmagnetics. New York: Addison-Wesley, 1994.
[17] C. Cha, Z. Huang, N. M. Jokerst, and M. A. Brooke, “Test-structure free modeling method for de-embedding the effects of pads on device modeling,” in Proc. IEEE Electronic Components and Technology Conference, 2003, pp. 1694-1700.


[18] K.-H. Drue, H. Thust, and J. Muller, “RF models of passive LTCCcomponents in the lower gigahertz-range,” Applied Microwave & Wireless, pp. 26-35, April 1998.
[19] A. Fathy, V. Pendrick, G. Ayers, B. Geller, Y. Narayan, B. Thaler, H. D. Chen, M. J. Liberatore, J. Prokop, K. L. Choi, and M. Swaminathan, “Design of embedded passive componets in low-temperature cofired ceramic on metal(LTCC-M)technology,” in IEEE MTT-S Int. Microwave Symp. Dig., 1998, pp. 1281-1284.
[20] T. S. Horng, J. M. Wu, L. Q. Yang, and S. T. Fang, “A novel modified-T equivalent circuit for modeling LTCC embedded inductors with a large bandwidth,” IEEE Trans. Microwave Theory Tech., vol. 51, pp. 2327-2333, Dec. 2003.
[21] C. T. Chiu, T. S. Horng, H. L. Ma, S. M. Wu, and C. P. Hung, “Super broadband lumped models for embedded passives,” in Proc. IEEE Electronic Component Technology Conference, 2004, pp. 1104-1107.
[22] T. Edwards, Foundations for Microstrip circuit Design. New York: John Wilery & Sons, 1992.
[23] 楊立群,低溫共燒陶瓷嵌入式電感與電容元件之設計與模型化,國立中山大學電機工程研究所碩士論文,2002。
[24] 李勝豐,在含內埋式電感與電容元件之LTCC多層基板上實現2.4 GHz雙點電壓控制振盪器,國立中山大學電機工程研究所碩士論文,2003。
[25] I. J. Bahl, “High-performance inductors,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 654-664, April 2001.
[26] I. J. Bahl, Lumped Elements for RF and Microwave Circuits. Boston: Artech House, 2003.
[27] A. Sutono, A. Pham, J. Laskar, and W.R. Smith, “RF/microwave characterization of multilayer ceramic-based MCM technology,” IEEE Trans. Adv. Packg., vol. 22, pp. 326-331, Aug. 1999.

[28] A. Sutono, A. Pham, J. Laskar, and W.R. Smith, “Development of three dimensional ceramic-based MCM inductors for hybrid RF/microwave applications,” in IEEE RFIC Symp. Dig., 1999, pp.175-178.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top