跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/30 16:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林士超
研究生(外文):Shih-Chao Lin
論文名稱:單面軸向磁場式永磁電動機之最佳操作效能設計
論文名稱(外文):Optimal Operational Strategy Design of a Single-sided Permanent Magnet Axial-flux Motor
指導教授:劉承宗劉承宗引用關係
指導教授(外文):Cheng-Tsung Liu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:87
中文關鍵詞:軸向力多重參考軸軸向磁場
外文關鍵詞:axial fluxefficiencyorthogonal axesrotational force
相關次數:
  • 被引用被引用:2
  • 點閱點閱:79
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提供了完整且系統化的評估步驟,使得單面軸向磁場式永磁電動機在線圈電流與速率電勢的雙重操作限制下,達到最佳的推進力與軸向力比值操作目標。根據旋轉磁場理論配合永久磁鐵退磁後縮曲線與等效磁路法,推導出電動機系統精確完整的數學模型,並透過多重參考軸原理與詳盡的數學分析,得知電動機的穩態操作限制與最佳電磁轉矩軌跡,最後再配合三維有限元素分析軟體與統計學驗證出,電動機可以經由適當的控制定子相對應電流來達到最佳推力與軸向力比值。從這些結果即可以提供一個完整且適當可行的控制法則,以實現單面軸向磁場式永磁電動機完整的磁場導向控制,最後應用此完整的驅動控制法則製作出以數位訊號處理器為核心之驅動控制實體電路,以實現電動機之最佳操作效能的目標。
This thesis presents a systematic scheme to determine the optimal propulsive/axial force ratio of a single-sided permanent magnet axial-flux motor (SPMAM) along with its operational constraints on both the winding currents and the speed induced voltages. According to the rotating magnetic field theory with combining the recoil line characteristics of permanent magnet and the equivalent operational magnetic circuits, appropriate projection of the stator currents to achieve an optimal ratio of the machine propulsive/axial forces has been confirmed through detailed three-dimensional finite element analysis (3-D FEA) and numerical studies. From these evaluations, a feasible operational guidance for SPMAM field oriented control (FOC) scheme realizations can be suitably provided. Finally, based on the proposed optimal scheme, a DSP-based drive system has been successfully implemented, and the desired operational strategy realization can be achieved.
目錄

頁次
中文摘要.................................................Ⅰ
英文摘要.................................................Ⅱ
目錄.....................................................Ⅲ
圖目錄...................................................Ⅴ
表目錄...................................................Ⅷ
符號索引.................................................Ⅸ

第一章 緒論.............................................1
1.1 前言.......................................1
1.2 研究背景...................................3
1.3 研究重點與目標.............................6

第二章 單面軸向磁場式永磁電動機系統模型推導與分析.......8
2.1 電動機架構.................................8
2.2 非均勻氣隙磁通分佈之推導與驗證............11
2.3 系統方程式推導............................21

第三章 最佳操作效能設計................................35
3.1 多重參考軸模型推導與分析..................36
3.2 電壓與電流限制............................41
3.3 有限元素法分析與驗證......................44

第四章 完整的磁場導向控制實現與實測....................51
4.1 完整的磁場導向控制架構....................51
4.2 驅動電路..................................54
4.3 系統實測與分析............................60

第五章 結論與未來研究方向..............................69

參考文獻.................................................72
作者自述.................................................75
[1]C.C. Chan and K.T. Chau, “An overview of power electronics in electric vehicles,” IEEE Trans. on Ind. Electronics, vol. 44, no. 1, pp. 3-13, Feb. 1997.
[2]M. Aydin, S. Huang, and T. A. Lipo, “A new axial flux surface mounted permanent magnet machine capable of field control,” Proceedings of the IEEE IAS 37th Annual Meeting, Pittsburgh, Pennsylvania, U.S.A., 2002.
[3]N. Bernard, H. B. Ahmed, and B. Multon, “Axial-field synchronous machine with homopolar flux in the airgap for a flywheel accumulator,” Proceedings of the IEEE IAS 37th Annual Meeting, Pittsburgh, Pennsylvania, U.S.A., 2002.
[4]N. Bianchi, S. Bolognani, D. D. Corte, and F. Tonel, “Tubular linear permanent magnet motors: an overall comparison,” Proceedings of the IEEE IAS 37th Annual Meeting, Pittsburgh, Pennsylvania, U.S.A., 2002.
[5]R. J. Hill-Cottingham, P. C. Coles, J. F. Eastham, F. Profumo, A. Tenconi, G. Gianolio, and M. Cerchio, “A plastic structure multi-disc axial flux permanent magnet motor,” Proceedings of the IEEE IAS 37th Annual Meeting, Pittsburgh, Pennsylvania, U.S.A., 2002.
[6]R. Qu and T. A. Lipo, “Dual-rotor, radial-flux, toroidally-wound, permanent magnet machines,” Proceedings of the IEEE IAS 37th Annual Meeting, Pittsburgh, Pennsylvania, U.S.A., 2002.
[7]R. Wang and M. J. Kamper, “Evaluation of eddy current losses in axial flux permanent magnet machine with an ironless stator,” Proceedings of the IEEE IAS 37th Annual Meeting, Pittsburgh, Pennsylvania, U.S.A., 2002.
[8]F. Caricchi, F. G. Capponi, F. Crescimbini, and L. Solero, “Experimental study on reducing cogging torque and core power loss in axial flux permanent magnet machines with slotted winding,” Proceedings of the IEEE IAS 37th Annual Meeting, Pittsburgh, Pennsylvania, U.S.A., 2002.
[9]C.-T. Liu and N. Sheu, “Optimal pole arrangement design of a linear switched reluctance machine,’’ IEEE Trans. on Magn., vol. 32, no. 5, pp. 5067-5096, 1996.
[10]C.-T. Liu, L.F. Chen, J.L. Kuo, Y.N. Chen, Y.J. Lee, and C.T. Leu, “Microcomputer control implementation of transverse flux linear switched reluctance machine with rule-based compensator,’’ IEEE Trans. on Energy Conv., vol. 11, no. 1, pp. 70-75, 1996.
[11]C.-T. Liu and S.C. Hsu, “Analysis of linear electromagnetic motion devices by multiple reference theory,’’ IEEE Trans. on Magn., vol. 34, no. 4, pp. 2063-2065, 1998.
[12]C.-T. Liu and Y.N. Chen, “On the feasible polygon classifications of linear switched reluctance machines,’’ IEEE Trans. on Energy Conv., vol. 14, no. 4, pp. 1282-1287, 1999.
[13]C.-T. Liu, K.S. Su, and J.W. Chen, “Operational stability enhancement analysis of a transverse flux linear switched-reluctance motor,’’ IEEE Trans. on Magn., vol. 36, no. 5, pp. 3699-3702, 2000.
[14]C.-T. Liu, T.-S. Chiang, J.F. Diaz Zamora, and S.-C. Lin, “Field-oriented control evaluations of a single-sided permanent magnet axial-flux motor for an electric vehicle,’’ IEEE Trans. on Magn., vol. 39, no. 5, pp. 3280-3282, Sep. 2003.
[15]C.-T. Liu and S.-C. Hsu, “Decoupled operational behavior studies and three-dimensional finite element analysis of a permanent magnet linear synchronous machine,’’ Proceedings of the 1999 IEEE Conference on International Electric Machines and Drives Conference, pp. 565-567, 1999.
[16]P. Vas, Vector Control of AC Machines, Oxford Univ. Press, 1990.
[17]R. Krishnan, Electric Motor Drives, Prentice-Hall, Upper Saddle River, New Jersey, U.S.A., 2001.
[18]Magsoft Corporation, FLUX 3D User’s Guide, Version 3.30, New York, U.S.A., Nov. 2001.
[19]J.F. Gieras and M. Wing, Permanent Magnet Motor Technology, Marcel Dekker, New York, U.S.A., 2002.
[20]A. E. Fitzgerald, C. Kingsley, Jr., and S. D. Umans, Electric Machinery, 6th ed., McGraw-Hill, New York, 2003.
[21]P.C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of Electric Machinery and Driver System, 2nd ed., Wiley-IEEE Press, New York, 2002.
[22]D.M. Ionel, M.J. Balchin, J.F. Eastham, and E. Demeter, “Finite element analysis of brushless DC motors for flux weakening operation,” IEEE Trans. on Magn., vol. 32, no. 5, Part 2, pp. 5040-5042, Sept. 1996.
[23]C.-T. Liu and K.C. Chuang, “Theorical modeling and operational analysis of a disc-type permanent magnet linear synchronous machine,” Proceedings of the 3rd International Symposium on Linear Drives for Industry Applications, Nagano, Japan, pp. 426-430, 2001.
[24]Texas Instruments, Implementation of a Speed Field Oriented Control of 3-phase PMSM Motor using TMS320F240, (SPRA588), 1999.
[25]Texas Instruments, TMS320LF/LC240xA DSP Controllers Reference Guide, (SPRU357B), 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top