跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 09:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周致遠
研究生(外文):Chih-Yuan Chou
論文名稱:陸地數位電視廣播系統調諧器射頻模組之研製
論文名稱(外文):Development of DVB-T RF Tuners
指導教授:洪子聖洪子聖引用關係
指導教授(外文):Tzyy-Sheng Horng
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:88
中文關鍵詞:射頻調諧器歐規陸地數位電視廣播系統低雜訊可變增益放大器
外文關鍵詞:Digital Video Broadcasting - Terrestrial(DVB-T)RF TunerLow-noise Variable-gain Amplifier
相關次數:
  • 被引用被引用:16
  • 點閱點閱:282
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要分為兩部分,第一部分主要為陸地數位電視廣播系統調諧器射頻模組製作與相關規範測試。經由詳盡的鏈路預算規劃後,採用雙次轉頻架構進行研製。實際測試結果,在涵蓋50-860MHz頻率範圍內且將增益調整至最大時,增益為49-57.6dB,雜訊指數為6.8-11.5dB,輸出三階調變交越點約為13.8dBm,模組整體可調增益範圍超過60dB,而影像拒絕能力也超過50dB。在簡化的單載波數位調制測試條件下,進行鄰近與重疊通道訊號干擾情形下之保護比例等測試項目時,則能完全符合歐規陸地數位電視廣播系統的規範。
第二部分則針對射頻調諧器前端關鍵元件–低雜訊可變增益放大器進行RFIC設計並且下線實作與測試,元件實測規格在頻率範圍100-900MHz內,增益調整至最大時為15.5±1.5dB,雜訊指數為2.4-4 dB,輸出三階調變交越點約為6.8dBm。元件整體可調增益範圍超過40dB,而且量測結果亦頗接近原先模擬預測之結果。
This thesis consists of two parts. Part one includes the design procedure and implementation of the building blocks for an RF tuner module used in the Digital Video Broadcasting – Terrestrial (DVB-T)system. It contains the comparison of several RF tuner architectures, frequency planning, and link-budget analysis. Measurement results for the designed tuner operating in the frequency range from 50 to 860 MHz show that the maximum power gain ranges from 49 to 57.6 dB. The entire range for gain control is over 60 dB. In the maximum gain state, the noise figure ranges form 6.8 to 11.5 dB, the output third-order interception point(OIP3)ranges from 11.7 to 13.8 dBm, and the image rejection is over 50 dB. By applying the simplified single-carrier modulation signals, the tuner can pass the DVB-T system specifications with respect to the adjacent-channel and overlapping-channel protection ratios.
In part two, an RFIC design for low-noise variable-gain amplifier that can be used in the RF front end of DVB-T system is presented. It operates from 100 to 900 MHz and dissipates 59.4 mW under a 3.3-V power supply. In the maximum gain state, measurement results for this RFIC show that the noise figure is less than 4 dB, the maximum gain is more than 14 dB, and the OIP3 is about 6.8dBm. The entire gain control range is over 40 dB.
第一章 緒論 1
1.1 背景與沿革 1
1.2 陸地數位電視廣播系統簡介 2
1.2.1 美規ATSC系統 3
1.2.2 歐規 DVB-T系統 3
1.2.3 日規ISDB-T系統 4
1.3 章節介紹 5
第二章 DVB-T系統射頻調諧器模組之研製 6
2.1 陸地數位電視廣播系統射頻調諧器架構 6
2.1.1 單次轉頻架構 7
2.1.2 雙次轉頻架構 8
2.1.3 直接轉頻架構 9
2.1.4 雙次轉頻式零中頻架構 10
2.2 DVB-T系統射頻規格簡介 11
2.2.1 訊雜比 11
2.2.2 調諧器靈敏度 12
2.2.3 鄰近通道保護比例 13
2.2.4 重疊通道保護比例 14
2.3 DVB-T系統射頻調諧器頻率規劃分析 15
2.4 DVB-T系統射頻調諧器模組鏈路預算分析 17
2.4.1靈敏度分析 18
2.4.2鄰近通道保護比例分析 18
2.5 DVB-T系統射頻調諧器各級建造方塊之製作 19
2.5.1 低通濾波器之製作與量測 20
2.5.2 低雜訊放大器之製作與量測 22
2.5.3 可變增益放大器之製作與量測 26
2.5.4 升頻混波波器之製作與量測 31
2.5.5 影像拒絕濾波器之製作與量測 35
2.5.6 降頻混波器之製作與量測 37
2.5.7 通道選擇濾波器之製作與量測 41
2.5.8 自動增益控制放大器之製作與量測 44
第三章 DVB-T系統射頻調諧器模組整合測試 49
3.1 DVB-T系統射頻調諧器模組鏈路效能預估 49
3.1.1靈敏度預估 50
3.1.2鄰近通道保護比例預估 51
3.2 DVB-T系統射頻調諧器模組整合測試 51
3.2.1 連續訊號(CW)參數測試 53
3.2.2 SNR、MER與EVM參數間之關係 56
3.2.3 QPSK調制訊號測試 58
3.2.4 16-QAM調制訊號測試 64
3.3 綜合討論 69
第四章 應用於DVB-T系統之低雜訊可變增益放大器RFIC設計...72
4.1 可變增益放大器簡介 72
4.2 設計原理與流程 74
4.3 模擬與量測結果 77
4.4 綜合討論 83
第五章 結論 84
參考文獻 85
[1] Y. Wu, E. Pliszka, B. Caron, P. Bouchard, and G. Chouinard, “Comparison of terrestrial DTV transmission systems: the ATSC 8-VSB, the DVB-T COFDM, and the ISDB-T BST-OFDM,” IEEE Trans. Broadcast., vol. 46, pp. 101-113, Jun. 2000.
[2] 行政院經濟部工業局, 數位視訊工業發展推動小組. (2004). [Online]. Available: http://www.dov.org.tw
[3] Digital Video Broadcasting (DVB), DVB-T Field Trials around the World, Jun. 1999.
[4] P. C. Skerlos, and P. Strammello, Jr., “All channel television tuning system,” US patent 4598425, 1986.
[5] Infineon Technologies, “2-band TV tuner,” TUA6020 Data Sheet, 2000.
[6] Philips, “Cable TV and VCR 2-band tuner”, TDA6502 Data Sheet, 2002.
[7] S. Sim, P. Kuhn, B. Pflaum, and C. Muschallik, “A three-band tuner for digital terrestrial and multistandard reception,” IEEE Trans. Consumer Electronics, vol. 48, pp. 709-717, Aug. 2002.
[8] G. M. Maier, V. Armbruster, K. Clemens, G. Siegel, H. Pensens, and J. P. Fuster, “Double conversion tuner a must for the future?,” IEEE Trans. Consumer Electronics, vol. 38, pp. 384-388, 1992.
[9] S. Birleson, J. Esquivel, P. Nelsen, J. Norsworthy, and K. Richter, “Silicon single-chip television tuner technology,” in IEEE Int. Conf. Consumer Electronics Tech. Dig., 2000, pp. 38-39.
[10] Microtune, Inc., “RF silicon tuner,” MT2032 Data Sheet, 2001.
[11] Conexant, “Digital cable tuner RFIC,” CN2811 Data Sheet, 2001.
[12] Broadcom Corporation, “Digital cable tuner,” BCM3415 Data Sheet, 2001.
[13] P. Vizmuller, RF Design Guide, System, Circuits, and Equations. Norwood, MA: Artech House, 1995.
[14] A. A. Abidi, “Direct-conversion radio transceivers for digital communications,” IEEE J. Solid-State Circuits, vol. 30, pp. 1399-1409, Dec. 1995.
[15] B. Razavi, “Design considerations for direct-conversion receivers,” IEEE Trans. Circuits Systems-II, vol. 44, pp. 428-435, June 1997.
[16] F. Aschwanden, “Direct conversion-how to make it work in TV tuners,” IEEE Trans. Consumer Electronics, vol. 42, pp. 729-738, Aug. 1996.
[17] J. Crols, and M. S. J. Steyaert, “A single-chip 900 MHz CMOS receiver front-end with a high performance low-IF topology,” IEEE J. Solid-State Circuits, vol. 30, pp. 1483-1492, Dec. 1995.
[18] J. Crols and M. S. J. Steyaert, “Low IF topologies for high performance analog front ends of fully integrated receivers,” IEEE Trans. Circuits and Systems-II, vol. 45, pp. 269-282, March 1998.
[19] M. Dawkins, A. P. Burdett, and N. Cowley, “Single chip tuner design for digital terrestrial television,” in Proc. IEEE ISCAS, 2001, pp. 125-128.
[20] M. Dawkins, A. P. Burdett, and N. Cowley, “A single-chip tuner for DVB-T,” IEEE J. Solid-State Circuits, vol. 38, pp. 1307-1317, Aug. 2003.
[21] “Digital Video Broadcasting (DVB);Framing structure, channel coding and modulation for digital Terrestrial television (DVB-T),” ETSI(European Telecommunication Standard Institute), ETS 300 744, 1997.
[22] “Digital Video Broadcasting (DVB);Implementation guidelines for DVB terrestrial services. Transmission aspects,” ETSI (European Telecommunication Standard Institute), ETR 101 190, 1997.
[23] “Planning Criteria for Digital Terrestrial Television Services in the VHF/UHF Bands,” Rec. ITU-R BT 1368-2, 2000.
[24] Mini-Circuits, “Surface Mount Low Pass Filter,” LFCN-1000 Data Sheet, 2003.
[25] WJ Communication Inc., “CATV Amplifiers,” AH2 Data Sheet, 2002.
[26] WJ Communication Inc., “Variable Gain Amplifiers,” VG024 Data Sheet, 2003.
[27] WJ Communication Inc., “Broadband Surface Mount Mixer,” SME1400B-17 Data Sheet, 2002.
[28] TAI-SAW Tech. Corp., “RF SAW Filters,” TA0194A Data Sheet, 2003.
[29] Maxim Inc., “Downconverter Mixers,” MAX2680/2681/2682 Data Sheet, 1998.
[30] TAI-SAW Tech. Corp., “SAW IF Filter 36.125MHz for Digital Cable TV,” TB0176A Data Sheet, 2003.
[31] Analog Devices, Inc., “Low Cost DC-150MHz Variable Gain Amplifier,” AD8330 Data Sheet, 2003.
[32] TVA2000-Q Portable QAM Spectrum Analyzer User Guide. [Online]. Available:http://www.swires.com/pdf/TVA2000QUG.PDF
[33] M. Sherman, Comments on MER Definition, Test Procedure, and Requirements for QAM Constellation Using HP 89441A. [Online]. Available:http://home.knology.net/ieee80214/802_14a/99-023_MER.doc
[34] F. Wenzl. (2003, Aug. 6). DVB-T Portable Test Set 4T2 Application Notes:EVM and MER. [Online]. Available: http://www.adcocom.com/filemanager/download/29/450511.pdf
[35] M. M. Velez, P. Augueira, D. de la Vega, A. Arrinda, and J. L. Ordiales, “DVB-T BER measurement in the presence of adjacent channel and co-channel analogue television interference,” IEEE Trans. Broadcast., vol. 47, pp. 80-84, March 2001.
[36] S. O’Leary, “Digital/Analogue co-channel protection ratio field measure- ments,” IEEE Trans. Broadcast., vol. 44, pp. 540-546, Dec. 1998.
[37] Microtune, Inc., “MicroTuner,” MT2030 Data Sheet, 2000.
[38] Microtune, Inc., “DVB-T Tuner,” 4702DT5 Data Sheet, 2001.
[39] M. Kawashima, H. Hayashi, T. Nakagawa, K. Nishikawa, and K. Araki, “A 0.9-2.6 GHz broadband RF front-end for direct conversion transceivers,” in IEEE MTT-S Int. Microwave Symp. Dig., 2002, pp. 927-930.
[40] D. Y. C. Lie, J. Kennedy, D. Livezey, B. Yang, T. Robinson, N. Sornin, T. Benkema, L. E. Larson, A. Senior, C. Saint, J. Blonski, N. Swanberg, P. Pawlowski, D. Gonya, X. Yuan, and H. Zamat, “A direct-conversion W-CDMA front-end SiGe receiver chip,” in IEEE RFIC Symp. Dig., 2002, pp.31-34.
[41] F. Piazza, P. Orsatti, Q. Huang, and H. Miyakawa, “A 2-mA 3-V 71-MHz IF Amplifier in 0.4-μm CMOS programmable over 80-dB range,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., 1997, pp. 78-79.
[42] S. Otaka, H. Tanimono, S. Watanabe, and T. Maeda, “A 1.9-GHz Si-bipolar variable attenuator for PHS transmitter,” IEEE J. Solid-State Circuits, vol. 32, pp. 1424-1429, Sept. 1997.
[43] S. Otaka, G. Takemura, and H. Tanimono, “A low-power low-noise accurate linear-in-dB variable- gain amplifier with 500-MHz bandwidth,” IEEE J. Solid-State Circuits, vol.35, pp. 1942-1948, Dec. 2000.
[44] R. G. Meyer, and W. D. Mack, “A DC to 1-GHz differential monolithic variable-gain amplifier,” IEEE J. Solid-State Circuits, vol. 26, pp. 1673-1680, Nov. 1991.
[45] W. M. C. Sansen, and R. G. Meyer, “An integrated wide-band variable-gain amplifier with maximum dynamic range, ” IEEE J. Solid-State Circuits, vol. Sc-9, pp. 159-166, Aug. 1974.
[46] N. Scheinberg, R. Michels, V. Fedoroff, D. Stoffman, K. Li, S. Kent, and M. Waight, “A GaAs up converter integrated circuit for a double conversion cable TV “set-top” tuner,” IEEE J. Solid-State Circuits, vol. 29, pp. 688-692, Jun. 1994.
[47] Y. S. Youn, C. S. Kim, N. S. Kim, and H. K. Yu, “A 1GHz-band low distortion up-converter with a linear in dB control VGA for digital TV tuner,” in IEEE RFIC Symp. Dig., 2001, pp.257-260.
[48] 浦大鈞,無線通訊影像拒絕降頻器與可變增益放大器之射頻積體電路設計,國立中山大學電機系碩士論文,2002。
[49] P. Y. Chan, A. Rofougaran, K. A. Ahmed, and A. A. Abidi, “A highly linear 1-GHz CMOS downconversion mixer,” in Proc. European Solid State Circuits Conf ., 1993, pp. 210-213.
[50] O. Shana’a, I. Linscott, and L. Tyler, “Frequency-scalable SiGe bipolar RF front-end design,” IEEE J. Solid-State Circuits, vol. 36, pp. 888-895, Jun. 2001.
[51] Document no. T-035-BI-SP-004 Rev. 1.0:TSMC 0.35μm Mixed Signal SiGe 3P3M Salicide AL_TEOS 3.3 V Noise Model(For SiGe Heterstructure Bipolar Transistor), Taiwan Semiconductor Manufacturing Company Ltd., Hsinchu, Taiwan, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊