跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 15:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:高銘政
研究生(外文):Ming-Cheng Kao
論文名稱:以溶膠凝膠技術製備焦電型紅外線感測元件之研究
論文名稱(外文):The Study of Pyroelectric Infrared Detectors Prepared by a Sol-Gel Technology
指導教授:陳英忠
指導教授(外文):Ying-Chung Chen
學位類別:博士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:129
中文關鍵詞:鉭酸鋰紅溶膠凝膠比感測率快速熱處理電壓響應外線感測器焦電響應
外文關鍵詞:rapid thermal processingLiTaO3specific detecivitysol-gel processingpyroelectric IR detectorvoltage responsivity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:0
本論文以溶膠-凝膠法及快速熱處理技術製備鉭酸鋰[LiTaO3,簡稱LT]焦電薄膜以作為紅外線感測元件之應用;利用旋鍍法將薄膜沈積於Pt/Ti/SiO2/Si(100)基板上,同時選擇1,3丙二醇為溶劑以減少達到薄膜所需厚度之披覆次數,並改變熱處理溫度(500~800℃)及升溫速率(600~3000℃/min),探討不同製程參數對薄膜成長之影響,找出最佳製程參數並製作成紅外線感測器,另一方面為了減少元件熱傳導效應,利用非等向性溼式蝕刻法在感測元件之基板上作背部蝕刻,藉由蝕刻時間控制背部矽基板厚度(20~350μm),研究矽基板厚度對於LiTaO3焦電薄膜紅外線感測器的影響。
實驗結果顯示,薄膜中製程升溫速率的快慢直接影響到LT薄膜的晶粒大小、介電性、鐵電性及焦電性;在薄膜特性方面,隨升溫速率的增加,LT薄膜的晶粒會有變小而緻密的趨勢,C軸優選排向有增強的趨勢,相對介電常數從28增加到45.6,介電損失則從0.009減少到0.003,而矯頑電場從122 KV/cm下降到60 KV/cm,殘留極化量從7.45 �媴/cm2上升到12.12 �媴/cm2,焦電係數γ從2.5×10-8 C/cm2K上升到4.25×10-8 C/cm2K。此外,實驗結果顯示在熱處理溫度為700℃與升溫速率為1800℃/min所得之LT薄膜具有最大之優值Fv (3.8×10-10 Ccm/J)及Fm (3.49 ×10-8 Ccm/J);在元件特性方面,隨著升溫速率的增加,在截波頻率為20 Hz時,電壓響應由LT600的2747 V/W增加到LT1800的4227 V/W,在截波頻率為300 Hz時,比感測率由LT600的9.7×107 cmHz1/2/W增加到LT1800的1.2×108 cmHz1/2/W;然而當升溫速率再增加時,電壓響度和比感測率均有下降的趨勢,結果顯示兩者皆在升溫速率為1800℃/min時具有最大值,此與薄膜優值之評估相符合。
在感測元件之背部蝕刻方面,研究結果顯示,在截光頻率20 Hz時,隨著矽基板厚度的減少(350~20μm),電壓響應(Rv)由4300 V/W上升至8398 V/W,而在截光頻率300Hz時,比感測率(D*)由1.2×108 cmHz1/2/W上升至 2.7×108 cmHz1/2/W,因此空腔結構的紅外線感測器可以有效地改善元件之感測特性。
In this thesis, the lithium tantalite [LiTaO3, abbreviated to LT] thin films were deposited on Pt/Ti/SiO2/Si substrates by spin coating with sol-gel processing and rapid thermal processing. 1,3 propanediol was used as solvent to minimize the number of cycles of spin coating and drying processes to obtain the desired thickness of thin film. By changing the heating rate (600~3000℃/min) and the heating temperature (500~800℃), the effects of various processing parameters on the thin films growth are studied. In addition, the thermal isolation of detecting elements was achieved by the anisotropic wet etching of back silicon substrate. In order to reduce the thermal mass and thermal time constant of detector, the sensing element was built-up on a thin membrane. By changing the membrane thickness (20~350 μm), the effects of various membrane thickness on the response of pyroelectric IR detector devices are studied also.
Experimental results reveal that the heating rate will influence strongly on grain size, dielectricity, ferroelectricity and pyroelectricity of LT thin films. With the increase of heating rate, the grain size of LT thin film decreases slightly, and the c-axis orientation is enhanced. The relative dielectric constant (εr ) of LT thin film increases from 28 up to 45.6, the dielectric loss (tan��) decreases from 0.009 to 0.003, the coercive field (Ec) decreases from 122 kV/cm to 60 kV/cm, the remnant polarization (Pr) increases from 7.45 �媴/cm2 to 12.12 �媴/cm2, and the pyroelectric coefficient (��) increases from 2.5�e10-8 C/cm2K up to 4.25�e10-8 C/cm2K, respectively, as the heating rate increases from 600 up to 3000℃/min. In addition, the results also show that the LT thin film possesses the largest figures of merit Fv (3.8×10-10 Ccm/J) and Fm (3.49×10-8 Ccm/J) at the heating temperature of 700℃ and heating rate of 1800℃/min. The voltage responsivity (Rv) measured at 20 Hz increases from 2747 to 4227 V/W and the specific detecivity (D*) measured at 300 Hz increases from 9.7×107 to 1.2×108 cmHz1/2/W with an increase of heating rate from 600 to 1800℃/min. However, the voltage responsivity and the specific detecivity decrease with heating rate in excess of 1800℃/min. The results show that LT1800 pyroelectric thin film detector exists both the maximums of voltage responsivity and specific detecivity.
In the study of detector with backside etching, as the thickness of membrane increased from 20 μm to 350 μm, the voltage responsivity (Rv) decreased from 8398 down to 4300 V/W, and the specific detecivity (D*) also decreased from 2.7×108 to 1.2×108 cmHz1/2/W. Experimental results revealed that the thermal isolated detectors with membrane thickness of 20 μm exhibited the excellent sensitivity.
Abstract I
Content V
Chapter 1 Introduction 1
1.1 General background and motivation 1
1.2 Organization of this thesis 3
Chapter 2 Theory 6
2.1 The structure of LiTaO3 6
2.2 Ferroelectricity 6
2.3 Sol-Gel processing 7
2.4 The choice of precursor 8
2.5 Fabrication of the film 8
2.6 Rapid thermal annealing 9
2.7 Pyroelectric effect 9
2.8 Pyrolelctric response 11
2.9 Wet etching mechanism 16
2.9 Silicon etching 17
2.10 Sputtering 18
2.11 DC glow discharge 19
Chapter 3 Experiments 21
3.1 Fabrications of LiTaO3 thin films 21
3.1.1 Properties of precursors 21
3.1.2 Thin film deposition 22
3.1.3 Thermal processing 23
3.2 RTA furnace 24
3.2.1 Infrared gold image furnace 24
3.2.2 Comparison of the CTA and RTA 24
3.3 XRD analysis 25
3.4 SEM analysis 25
3.5 AFM analysis 25
3.6 Thickness analysis 26
3.7 SIMS (Secondary Ion Mass Spectroscopy) 26
3.8 Electrical measurements 26
3.9 Fabrication of traditional IR detectors without back surface etching 26
3.10 Fabrication of IR detectors with back etching 27
3.11 Dynamic response measurement 29
Chapter 4 Results and discussion 31
4.1 The analysis of the solution 31
4.1.1 The composition analysis of the solution 31
4.1.2 Differential thermal analysis (DTA) and Thermogravimetric analysis (TGA) 31
4.2 The thickness analysis of the film 32
4.3 Orientation analysis of the films 32
4.3.1 The effects of annealing temperature 32
4.3.2 The effects of heating rate 32
4.3.3 XRD comparisons of RTA and CTA 33
4.4 Surface morphology analysis 34
4.4.1 The effect of the annealing temperature 34
4.4.2 The effect of the heating rate 34
4.4.3 SEM comparisons of RTA and CTA 35
4.5 AFM analysis 35
4.6 SIMS analysis 35
4.7 Dielectric constant 36
4.8 Dielectric loss 36
4.9 Current-Voltage measurement 37
4.10 Leakage Current mechanisms 37
4.11 P-E measurement 39
4.12 Pyroelectric coefficient measurement 39
4.13 The characteristics of the thin film detectors without back surface etching 40
4.13.1 Voltage responsivity (RV) and current reponsivity (RI) 40
4.13.2 The noise voltages (Vn) 42
4.13.3 The noise equivalent power (NEP) and the specific detectivity (D*) 42
4.14 The characteristics of the thin film detectors with back surface etching 43
4.14.1 Si3N4 etching 43
4.14.2 SiO2 etching 44
4.14.3 Si etching in KOH solution 44
4.14.4 The microstructure of silicon etching 45
4.14.5 Voltage responsivity (RV) 45
4.14.6 Thermal time constant (τt) 46
4.14.7 The Noise voltages (Vn) 46
4.14.8 The specific detectivity (D*) 47
4.14.9 Comparison of the IR detector with and without back etching 47
4.15 Comparisons of this work with published studies 48
Chapter 5 Conclusion 49
Chapter 6 Future works 51
References 52
Fig. 2-1 Stereoscopic view of the lithium tantalite crystal structure. 63
Fig. 2-2 Stereoscopic view of the bonding topography around tantalum 64
Fig. 2-3 Hysteresis loop of ferroelectric material. 65
Fig. 2-4 The schematic diagram of the spin coating process. 66
Fig. 2-5 Pyroelectric effect. 67
Fig. 2-6 A pyroelectric detector element. 68
Fig. 2-7 A common pyroelectric detecting system. 69
Fig. 2-8 Variation in voltage responsitivity RV with frequency. 70
Fig. 2-9 Orientation-dependent etching. (a) Through window patterns on <100>-oriented silicon; (b) through window patterns on <110>-oriented silicon. 71
Fig. 2-10 Voltage versus current characteristic for three types of self-sustained discharges (p= 2 to 30 Pa). 72
Fig. 2-11 Features of a dc glow discharge system. 73
Fig. 3-1. The flow diagram for preparation of LiTaO3 films. 74
Fig. 3-2 The schematic diagram of the DC magnetron sputtering system. 75
Fig. 3-3 The schematic diagram of the infrared gold image furnace. 76
Fig. 3-4 The metal foil mask(mm). 77
Fig. 3-5 The traditional single IR detector. 78
Fig. 3-6 Fabrication process of the LiTaO3 thin film IR detector with back surface etching, (a) Pt/Ti bottom electrode deposition, (b) Al/LiTaO3 deposition, (c) backside etch-window patterning, and (d) backside bulk-silicon etching. 79
Fig. 3-7 (a)Cross section of etching fixture used to protect front devices during etch in hot KOH, and (b) top view of detector. 80
Fig. 3-8 The schematic diagram of the IR detector measurement system. 81
Fig.4-1 TGA-DTA curves of the LiTaO3 solution. 82
Fig.4-2 A cross-sectional photograph of LiTaO3 film annealed at 700℃ 83
Fig.4-3 XRD results as a function of annealing temperature for LiTaO3 films annealed by CTA for 1 hour. 84
Fig.4-4 XRD results as a function of heating rate for LiTaO3 films annealed at 700℃ for 2 min. 85
Fig. 4-5 The f factor as a function of heating rate for LiTaO3 films annealed at 700℃ for 2 min. 86
Fig. 4-6 XRD results of the LiTaO3 thin films annealed by CTA method at 700 oC for 1h (a), and RTA method at 700oC for 2min (b). 87
Fig. 4-7 The SEM surface morphologies of LiTaO3 films annealed at, (a) 500 oC, (b) 600 oC, (c) 700 oC, and (d) 800 oC with heating rate of 1800oC/min. 88
Fig. 4-8 The SEM surface morphologies of LiTaO3 films annealed at 700℃ with heating rate of, (a) 600 ℃/min, (b) 1200 ℃/min, (c) 1800 ℃/min, (d) 2400 ℃/min, and (e) 3000 ℃/min. 89
Fig. 4-9 SEM of the LiTaO3 thin films annealed by CTA method at 700 oC for 1h (a), and RTA method at 700oC for 2min (b). 90
Fig. 4-10 AFM images of LiTaO3 films annealed at 700℃ with heating rate of, (a) 600 ℃/min, (b) 1800 ℃/min, and (c) 3000 ℃/min. 91
Fig. 4-11The SIMS analysis for LiTaO3 thin film. 92
Fig. 4-12 Heating rate dependence of dielectric properties for the LiTaO3 thin films 93
Fig. 4-13 Heating rate dependence of leakage current density for LiTaO3 thin films 94
Fig. 4-14 Log J-E1/2 plots of LiTaO3 thin films annealed at heating rate of, (a) 600 oC /min, (b) 1800 oC /min, and (c) 3000 oC/min. 95
Fig.4-15 The Sawyer-Tower circuit. 96
Fig. 4-16 Ferroelectric hysteresis loops of LiTaO3 thin films annealed at 700℃ with heating rate of, (a) 600℃/min, (b) 1800℃/min, and (c) 3000℃/min. 97
Fig. 4-17 Heating rate dependence of the coercive field (Ec) and remnant polarization (Pr) for LiTaO3 thin films 98
Fig. 4-18 The schematic diagram of the pyroelectric current measurement system. 99
Fig. 4-19 Heating rate dependence of pyroelectric coefficient for LiTaO3 thin films. 100
Fig. 4-20 Dependences of the figures of merit Fv and Fm on heating rate. 101
Fig. 4-21 Frequency dependence of the voltage responsivity (RV) and current reponsivity (RI) of LiTaO3 thin film IR detector with heating rate of 600℃/min. 102
Fig. 4-22 Frequency dependence of the voltage responsivity (RV) and current reponsivity (RI) of LiTaO3 thin film IR detector with heating rate of 1800℃/min. 103
Fig. 4-23 Frequency dependence of the voltage responsivity (RV) and current reponsivity (RI) of LiTaO3 thin film IR detector with heating rate of 3000℃/min. 104
Fig. 4-24 Dependence of the maximum voltage reponsivity on heating rate at 20Hz. 105
Fig. 4-25 Frequency dependence of the noise voltage per unit bandwidth for LiTaO3 thin film IR detectors without back side etching. 106
Fig. 4-26 Frequency dependence of the noise equivalent power and the specific detectivity of LiTaO3 thin film IR detector with heating rate of 600℃/min. 107
Fig. 4-27 Frequency dependence of the noise equivalent power and the specific detectivity of LiTaO3 thin film IR detector with heating rate of 1800℃/min. 108
Fig. 4-28 Frequency dependence of the noise equivalent power and the specific detectivity of LiTaO3 thin film IR detector with heating rate of 3000℃/min. 109
Fig. 4-29 Dependence of the maximum specific detectivity on heating rate at 300Hz. 110
Fig. 4-30 Etch rate as a function of temperature for Si3N4 in H3PO4 etchant. 111
Fig. 4-31 Etch rate as a function of temperature for SiO2 in BOE etchant. 112
Fig. 4-32 Etch rate as a function of temperature for silicon in KOH etchant. 113
Fig. 4-33 Etch rates as a function of stirred speed for silicon in KOH etchant. 114
Fig. 4-34 The photograph of backside bulk-silicon etching. 115
Fig. 4-35 Various etched depths of silicon, (a) 120μm, (b) 150μm, (c) 170μm, (d) 270μm, (e) 370μm, (f) 470μm. 116
Fig. 4-36 The modulation frequency dependence of Rv for the LiTaO3 thin film IR detectors on various thickness of membrane. 117
Fig. 4-37 Membrane thickness dependence of the thermal time constant (τt) for detectors. 118
Fig. 4-38 Dependence of the voltage responsivity on membrane thickness at 20 Hz. 119
Fig. 4-39 Frequency dependence of the noise voltage per unit bandwidth for LiTaO3 thin film IR detectors. 120
Fig. 4-40 The modulation frequency dependence of the specific detectivity for LiTaO3 thin film IR detectors. 121
Fig. 4-41 Dependence of the specific detectivity on membrane thickness at 100 Hz. 122
Fig. 4-42 Modulation frequency depended Rv, D* and Vn for LiTaO3 thin film IR detector with and without back etching. 123
Table 1 The characteristic parameters of LiTaO3 and LiNbO3. 124
Table 2 Deposition conditions of Pt film. 125
Table 3 The ratios of the XRD intensities of LiTaO3 films with various heating rates. 126
Table 4 The electrical and pyroelectric properties of the LiTaO3 thin films. 127
Table 5 The measured dielectric constants and β values of LiTaO3 thin films annealed at various heating rates. 128
Table 6 Comparison of electrical and pyroelectric properties of LiTaO3 film with published materials. 128
Table 7 Comparison of dynamic respones of this work with published reports 129
[1] R. W. Whatmore, A. Patel, N. M. Sorrocks and F. W. Aiger, “Ferroelectric Materials for Thermal IR Sensors State-of-the-Art and Perspectives”, Ferroelectrics Vol.104 (1990) pp. 269-283.
[2] R. Watton, “Ferroelectric Materials and Devices in Infrared Detection and Imaging”, Ferroelectrics Vol.91 (1989) pp. 87-108.
[3] N. Yoshiike, K. Arita, K. Morinaka, K. Hashimoto, M. Kawaguri and A. Nishino, “Human information sensor”, Sens. & Actuat. A Vol.48 (1995) pp.73-78.
[4] N. Chong, H. L. W. Chan and C. L. Choy, “Pyroelectric sensor array for in-line monitoring of infrared laser”, Sens. & Actuat. A Vol.96 (2002) pp. 231-238.
[5] Hossain, A. and Rashid M.H., "Pyroelectric detectors and their applications", IEEE Trans. Ind. Applic. Vol.27 (1991) pp. 824-829.
[6] Y. Kuwano, T, Imai, Y, Kishi, S, Nakano, K, Shibata and T. Yokoo, “A New-Structure LiTaO3 Pyroelectric Infrared Detector”, Ferroelectrics Vol.46 (1983) pp. 175-183.
[7] K. Shibata, Y. Kuwano, S. Nakano, K. Takeuchi, T. Tanaka and T. Yokoo, “Modulation Type Pyroelectric Infrared-Sensor Using LiTaO3 Single-Crystal”, Jpn. J. App. Phys. Vol.24 (1985) pp. 181-183.
[8] A. Shaulov and M. Simhony, “Internal bias effects on pyroelectric measurements near the Curie temperature in triglycine sulphate”, J. Appl. Phys. Vol.47 (1976) pp. 1-5.
[9] L. Weiguo, S. K. Jong and Z. Weiguang, “Preparation and properties of multilayer Pb(Zr,Ti)O3/PbTiO3 thin films for pyroelectric application”, Thin Solid Films Vol.371 (2000) pp. 254-258.
[10] K. R. Han, H. J. Koo, M. J. Hong and C. S. Lim, “Simple Synthesis of Submicrometer Lead Titanate Powder by Precipitation of TiO2 Precursor on PbO Particulates”, J. Amer. Ceram. Soc. Vol.83 (2000) pp. 971-973.
[11] J. J. Ho, Y. K. Fang, K. H. Wu, W. T. Hsieh, C. W. Chu, C. R. Huang, M. S. Ju and C. P. Chang, “A high sensitivity lead-titanate (PbTiO3) pyroelectric thin-film infrared sensor with temperature isolation improvement structure”, IEEE Electron Device Lett. Vol.19 (1998) pp. 189-191.
[12] T. Ozeki and S. Saito, “Pyroelectric detector coupled with ultrasonic parametric amplifier”, Quantum Electronics Vol.8 (1972) pp.289-295.
[13] M. C. Kao, C. M. Wang, H. Z. Chen, M. S. Lee and Y. C. Chen “Thickness-Dependent Leakage Current of (Polyvinylidene Fluoride/Lead Titanate) Pyroelectric detectors”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol.50 (2003) pp. 958-964.
[14] C. M. Wang, M. C. Kao, Y. C. Chen and Y. H. Lai “The Properties of Sol-Gel Derived (Polyvinylidene Fluoride/Lead Titanate) Pyroelectric Bilayer Thin Films”, Jpn. J. Appl. Phys., Part 1, Vol.42 (2003) pp. 170-174.
[15] M. C. Kao, C. M. Wang, M. S. Lee, H. Z. Chen and Y. C. Chen “Characterization of Sol-Gel Prepared Magnesium Modified Lead Titanate Thin Films”, Applied Physics A, vol.78, pp. 705-709, March 2004
[16] M. C. Kao, H. Z. Chen; C. M. Wang and Y. C. Chen, “Pyroelectric properties of sol–gel derived lithium tantalite thin films”, Physica B Vol.329-333 (2003), pp. 1527-1528.
[17] D. K. Fork, G. B. Anderson, “Low temperature synthesis and properties of lithium niobate thin films”, Appl. Phys. Lett. Vol.63 (1993) pp. 1331-1333.
[18] L. S. Hung, J. A. Agostinelli, J. M. Mir, L. R. Zheng, “Epitaxial nonlinear optical films of LiTaO3 grown on GaAs in waveguide form”, Appl. Phys. Lett. Vol.62 (1993) pp. 3071-3073.
[19] A. Rauber, in Current Topics in Materials Science, edited by E. Kaldis (North-Holland, Amsterdam, 1978), Vol. 1, p. 250.
[20] M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press, Oxford, 1977.
[21] I. Savatinova, “Raman study of planar optical waveguides in LiNbO3 and LiTaO3”, Journal of Molecular Structure Vol.348 (1995) pp. 289-292.
[22] Y. Toda and M. Ohtsu, “High spatial resolution diagnostics of optical waveguides using a photon scanning tunneling microscope”, Optics & Laser Technology Vol.27 (1995) pp. xii
[23] A. Holm, Q. Stürzer; Y. Xu and R. Weigel, “Investigation of surface acoustic waves on LiNbO3, quartz, and LiTaO3 by laser probing”, Microelectronic Engineering Vol.31 (1996) pp. 123-127.
[24] S. Tascu, P. Moretti, S. Kostritskii and B. Jacquier, “Optical near-field measurements of guided modes in various processed LiNbO3 and LiTaO3 channel waveguides”, Optical Materials Vol.24 (2003) pp. 297-302.
[25] W. Yue and J. Yi-jian, “Crystal orientation dependence of piezoelectric properties in LiNbO3 and LiTaO3”, Optical Materials Vol.23 (2003) pp. 403-408.
[26] H. Ahlfeldt, F. Laurell and G. Arvidsson, “Strongly reduced optical nonlinearity in lithium tantalate due to proton exchange”, Electronics Letters Vol.29 (1993) pp. 819-821.
[27] Mizuuchi, Y. Kitaoka and K. Yamamoto, “Tuning of phase-matching wavelength in waveguide-type LiTaO3 frequency doubler”, Electronics Letters Vol.31 (1995) pp. 727-728.
[28] Q. Chen, Y. Chiu, D. N. Lambeth, T. E. Schlesinger and D. D. Stancil, “Guided-wave electro-optic beam deflector using domain reversal in LiTaO3”, Lightwave Technology Vol.12 (1994) pp. 1401-1404.
[29] W. L. Chen, D. J. Chen and W. S. Wang, “Fabrication of LiTaO3 optical waveguides by Ni diffusion below the Curie temperature”, Photonics Technology Letters Vol.7 (1995) pp 203-205.
[30] R.E. Cohen, “Theory of ferroelectrics: a vision for the next decade and beyond“, J. Phys. Chem. Solids Vol.61 (2000) pp. 139-146.
[31] T. Fukuda and H. Hirano, “Solid-solution LiTaxNb1−xO3 single crystal growth by Czochralski and edge-defined film-fed growth technique”, J. Crystal Growth Vol.35 (1976) pp. 127-132.
[32] T. Kawaguchi, H. Kitayama, M. Imaeda, S. Ito, K. Kaigawa, T. Taniuchi and T. Fukuda, “Stoichiometry of liquid-phase epitaxial grown LiNb1−xTaxO3 films on LiNbO3 substrates“, J. Crystal Growth Vol.169 (1996) pp. 94-97.
[33] B.J. Curtis and H.R. Brunner, “The growth of thin films of lithium niobate by chemical vapour de position”, Mater. Res. Bull. Vol.10 (1975) pp. 515-520.
[34] S. Miyazawa, “Growth of LiNbO3 single-crystal film for optical waveguides”, Appl. Phys. Lett. Vol.23 (1973) pp. 198-200.
[35] A.M. Prokhorov, Y.S. Kuz''minov and O.A. Khachaturyan, Ferroelectric Thin-Film Waveguides in Integrated Optics and Optoelectronics, Cambridge International Science Publishing, 1996, p. 173.
[36] R.C. Baumann, T.A. Rost and T.A. Rabson, “Deposition and physical characterization of thin films of lithium niobate on silicon substrates”, J. Appl. Phys. Vol.68 (1990) pp. 2989-2991.
[37] R.A. Betts and C.W. Pitt, “Growth of Thin-Film Lithium-Niobate by Molecular-Beam Epitaxy”, Electron. Lett. Vol.21 (1985) pp. 960-962.
[38] A.A. Wernberg, H.J. Gysling, A.J. Filo and T.N. Blanton, “Epitaxial growth of lithium niobate thin films from a single-source organometallic precursor using metalorganic chemical vapor deposition” Appl. Phys. Lett. Vol.62 (1993) pp. 946-948.
[39] S.Y. Lee and R.S. Feigelson, “Reduced optical losses in MOCVD grown lithium niobate thin films on sapphire by controlling nucleation density“, J. Crystal Growth Vol.186 (1998) pp. 594-606.
[40] F. Veignant, M. Gandais, P. Aubert and G. Garry, “Structural evolution of lithium niobate deposited on sapphire (001): from early islands to continuous films”, J. Crystal Growth Vol.196 (1999) pp. 141-150.
[41] V. Joshi, D. Roy and M. L. Macartney, “Low temperature synthesis and properties of lithium niobate thin films” Appl. Phys. Lett. Vol.63 (1993) pp. 1331-1333.
[42] S. Ono, O. BoÈse, W. Unger, Y. Takeichi and S. Hirano, “Chemical Processing of Potassium-Substituted Strontium Barium Niobate Thin Films through Metallo-organics“, J. Am. Ceram. Soc. Vol.81 (1998) pp.1749-1755.
[43] T.A. Deis and P.P. Phule, J. Mater. Sci. Lett. Vol.11 (1992) 1353.
[44] S.D. Cheng, C.H. Kam, Y. Zhou, X.Q. Han, W.X. Que, Y.L. Lam, Y.C. Chan, J.T. Oh and W.S. Gan, “C-axis oriented sol–gel derived LiNb1−xTaxO3 thin films on Si(111) substrates“, Thin Solid Films Vol.365 (2000) pp. 77-81.
[45] M. C. Kao, M. S. Lee, C. M. Wang, H. Z. Chen and Y. C. Chen “Properties of LiTaO3 Thin Film Derived by a Diol-Based Sol-Gel Process”, Jpn. J. Appl. Phys., Part 1, Vol.41 (2002) pp. 2982-2986.
[46] M. C. Kao, H. Z. Chen, C. M. Wang, Y. C. Chen and M. S. Lee "Rapid thermal processing of lithium tantalite thin films prepared by a diol-based sol-gel process", Appl. Phys. A, Vol.79, (2004) pp. 103-106.
[47] S. D. Cheng, Y. Zhou, C. H. Kam, X. Q. Han, W. X. Que, Y. L. Lam, Y. C. Chan, J. T. Oh and W. S. Gan, “LiTaO3 films with c-axis preferred orientation prepared on Si(111) substrate by sol-gel method”, Materials Letters Vol.44 (2000) pp.125-129.
[48] S. D. Cheng, Y. Zhou, C. H. Kam, X. Q. Han, W. X. Que, Y. L. Lam, Y. C. Chan, J. T. Oh and W. S. Gan, “C-axis oriented sol-gel derived LiNb1-xTaxO3 thin films on Si(111) substrates”, Thin Solid Films Vol.365 (2000) pp.77-81.
[49] S. D. Cheng, C. H. Kam, Y. Zhou, Y.L. Lam, Y. C. C. K. Pita and W. S. Gan,”Sol-Gel Derived Ferroelectric Thin-Films of LiTaO3 on SiO2/Si Substrate”, Ferroelectrics, Vol.232 (1999), Iss 1-4, pp 979-984.
[50] T. A. Deis, P. P. Phule, ”Preparation of oriented lithium tantalite thin films using molecularly modified tantalum(V) ethoxide and lithium acetate”, Journal f Materials Science Vol.11 (1992) pp.1353-1355.
[51] Keiichi Nashimoto, Hiroaki Moriyama and Eisuke Osakabe, “Control of Crystallinity in Sol-Gel Derived Epitaxial LiNbO3 Thin Films on Sapphire”, Jpn. J. App. Phys. Vol.35 (1996) pp.4936-4940.
[52] R. Jiménez, M. L. Calzada and J. Mendiola, ”C-axis oriented sol-gel (Pb,Ca)TiO3 ferroelectric thin films on Pt/MgO”, Thin Solid Films Vol.348 (1999) pp.253-260.
[53] X. J. Meng, J. G. Cheng, B. Li, S. L. Guo, H. J. Ye and J. H. Chu, “Low-temperature preparation of highly (111) oriented PZT thin films by a modified sol-gel technique”, Journal of Crystal Growth Vol.208 (2000) pp.541-545.
[54] X. J. Meng, J. G. Cheng, B. Li, S. L. Guo, H. J. Ye and J. H. Chu, “Dependence of texture development on thickness of single-annealed-layer in sol-gel derived PZT thin films”, Thin Solid Films Vol.368 (2000) pp.22-25.
[55] Jinrong Cheng and Zhongyan Meng, “Thickness-dependent microstructures and electrical properties of PZT films derived from sol-gel process”, Thin Solid Films Vol.385 (2001) pp.5-10.
[56] Xiaorong Fu, Jinhua Li, Zhitang Song and Chenglu Lin, “Growth of highly (100)-oriented Zr-rich PZT thin films on Pt/Ti/SiO2/Si substrate by a simple sol-gel process”, Journal of Crystal Growth Vol.220 (2000) pp.82-87.
[57] E. B. Araújo and J. A. Eiras, “PZT thin films produced by oxide precursors and crystallized by conventional and RTA process”, Journal of the European Ceramic Society Vol.21 (2001) pp.1513-1516.
[58] Xiangjian Meng, Jiangong Cheng, Hongjuan Ye and Junhao Chu, “Characterization of the crystallization behaviors in the PbTiO3 thin films on Si substrates by an infrared spectroscopy technique”, Infrared Physics & Technology Vol.41 (2000) pp.47-50.
[59] M. L. Calzada, A. González, R. Jiménez, C. Alemany and J. Mendiola, “Rapid thermal processing of strontium bismuth tantalite ferroelectric thin films prepared by a novel chemical solution deposition method”, Journal of the European Ceramic Society Vol.21 (2001) pp.1517-1520.
[60] R. Jiménez, M. L. Calzada and J. Mendiola, “Conditioning effects on RTP(Pb,Ca)TiO3 thin films”, Thin Solid Films Vol.335 (1998) pp.292-298.
[61] Andreas Seifert, Paul Muralt and Nava Setter, “High figure-of-merit porous Pb1-xCaxTiO3 thin films for pyroelectric applications”, Applied Physics Letters, Vol.72 (1998) pp.2409-2411.
[62] F. Y. Chen, Y. K. Fang, C. Y. Shu and J. R. Chen, “A metal-ferroelectric PbTiO3-semiconductor switch diode (MFSS) for room-temperature high-speed infrared sensing application“ IEEE Trans. Electron Devices, Vol.43 (1996) pp. 2019-2021.
[63] K. No, C. G. Choi, D. S. Yoon, T. H. Sung, Y. C. Kim, I. S. Jeong and W. J. Lee, “Pyroelectric Properties of Sol-Gel Derived Lanthanum Modified Lead Titanate Thin Films”, Jpn. J. Appl. Phys. Vol.35 (1996) pp. 2731-2733.
[64] M.D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving Resolution in Photolithography with a Phase-Shifting Mask”, IEEE Trans. Electron Devices. Vol.29, (1982) pp. 1828-1836.
[65] D. P. Kern, T. H. P. Chang, P. J. Coane and P. J. Houzego, “Practical Aspects of Microfabrication in the 100 Nm Regime”, Solid State Technol. Vol.27 (1984) pp. 127-131.
[66] D. Xue, K. Betzler and H. Hesse, “Dielectric properties of lithium niobate-tantalate crystals”, Solid State Communications Vol.115 (2000) pp. 581-585.
[67] 李雅明,”固態電子學”,全華科技圖書股份有限公司,(1995) pp.168-170.
[68] T. Mitsui, I. Tatsuzaki and E. Nakamura, “An Introduction to the Physics of Ferroelectrics”, Gordor and Breach Science Publishers, pp.2.
[69] A. J. Moulson and J. M. Herbert, “ELECTROCERAMICS Materials.Properties.Applications”, Chapman & Hall, (1990).
[70] M. Ali Omar, “Elementary Solid State Physics”, Addison Wesley, (1975).
[71] M. A. Aegerter, M. Jafelicci Jr, D. F. Souza and E. D. Zanotto, “SOL-GEL SCIENCE and TECHNOLOGY”, World Scientific, Singapore (1989).
[72] B.Jirgensons and M. E. Straumains, “Colid Chemistry”, MvMillan Co., NewYork (1962).
[73] M. Lourdes Calzada, Rafael Sirera, Francisco Carmona and Basilio Jiménez, “Investigations of a Diol-based Sol-Gel Proces for the Preparation of Lead Titanate Materials”, J. Am. Ceram. Soc. Vol.78 (1995) pp.1802-1808.
[74] Nicolas J. Phillips, Maria L. Calzada and Steven J. Milne, “Sol-gel-derived lead titanate films”, Journal of Non-Crystalline Solids 147&148(1992) pp.285-290.
[75] Y. L. Tu and S. J. Milne, “A study of the effects of process variables on the properties of PZT films produced by a single-layer sol-gel technique”, J. Mater. Sci. Vol.30 (1995) pp.2507-2516.
[76] 吳朗,”電子陶瓷入門”,全欣資訊圖書股份有限公司,(1992) pp.159-161.
[77] R. W. Whatmore, “Pyroelectric devices and materials”, Rep. Prog. Phys. Vol.49 (1986) pp.1335.
[78] M. Kohli, C. Wuethrich, K. Brooks, B. Willing, M. Foster, P. Muralt, N. Setter and P. Ryser, “Pyroelectric thin-film sensor array”, Sensors and Actuators A, Vol.60 (1997) pp.147-153.
[79] 賴耿陽,”紅外線工學基礎應用”,台灣復文興業股份有限公司,(1991) pp.127-128, pp.150.
[80] R. C. Jones, Proc. Inst. Radio. Vol.47 (1959) pp.1495.
[81] 莊達人,”VLSI 製造技術”,高立圖書有限公司,(1995) pp.160-162.
[82] 施敏 著,張俊彥 譯,”半導體元件之物理與技術”,儒林圖書有限公司,(1990) pp.425.
[83] R. W. Berry, P. M. Hall and M. T. Harris, “Thin Film Technology”, Van Nostrand Reinhold, (1980) pp.201.
[84] R. Behrisch and K. Wittmaack, “Sputtering by Particle Bombardment III”, Springer-Verlag, Berlin Heidelberg, (1991) pp. 343-345.
[85] 江旭臻,Chemistry (The Chinese Chem. Soc., Taiwan China), Vol.48 (1990) pp.50-57.
[86] F. Y. Chen, Y. K. Fang, C. Y. Shu and J. R. Chen, “A metal-ferroelectric PbTiO3-semiconductor switch diode (MFSS) for room-temperature high-speed infrared sensing application”, IEEE Trans. Electron Devices, Vol.43 (1996) pp. 2019-2021.
[87] K. No, C. G. Choi, D. S. Yoon, T. H. Sung, Y. C. Kim, I. S. Jeong and W. J. Lee, “Pyroelectric Properties of Sol-Gel Derived Lanthanum Modified Lead Titanate Thin Films”, Jpn. J. Appl. Phys. Vol.35 (1996) pp. 2731-2733.
[88] B. L. Yang, H. Wong, Y. C. Cheng and B. Y. Liu, “Temperature-Dependence of Electronic Conduction in Thin Nitrided Oxides” J. Appl. Phys. Vol.75 (1994) pp. 1832-1834.
[89] K. C. Kao and W. Hwang, Electrical Transport in Solids (Pergamon, Oxford, 1981)
[90] J. G. Simmons, in L. I. Maissel and R. Glang (Eds), Handbook of Thin Film Technology, Chap. 14, p. v25, McGraw-Hill, New York (1970).
[91] P. Hesto, in: G. Barvotlin, A. Vapaille (Eds), Instabilities in Silicon Devices, Ch. 5, vol. 1, p. 263, North-Holland, Amsterdam (1986).
[92] J. G. Simmons, in L. I. Maissel and R. Glang (Eds), Handbook of Thin Film Technology, Chap. 14, p. v28, McGraw-Hill, New York (1970).
[93] S. M. Sze, Physics of Semiconductor Devices, Ch. 7, p. 402, Wiley, New York (1981).
[94] H. Diamant, K. Drenck and R. Pepinsky, “Bridge for accurate measurement of ferroelectric hysteresis”, The Review of Scientific Instruments, Vol.28 (1957) pp.30-33.
[95] S. Bauer and B. Ploss, Ferroelectrics Vol.106 (1990) pp.393-398.
[96] K. Hashimoto, T. Tsuruta, K. Nishimura, K.Morinaka, M. Kawaguri and N. Yoshiike,” Characteristics of Pyroelectric Infrared Array Detector Made of PbTiO3 Ceramics”, Jpn. J. Appl. Phys. Vol.36 (1997) pp.3553-3557.
[97] C. M. Wang, Y. C. Chen, M. S. Lee, C. C. Chiou and Y. T. Huang, “Pyroelectric Properties of La-modified Lead Titanate Thin Film Detectors”, Jpn. J. Appl. Phys., Part 1, Vol.38 (1999) pp.2831-2834.
[98] R. Takayama, Y. Tomita, K. Iijima, and I. Ueda, “Preparation and characteristics of pyroelectric infrared sensors made of c-axis oriented La-modified PbTi03 thin films”, J. Appl. Phys. Vol.61 (1987) pp. 411-415.
[99] C. M. Wang, Y. T. Huang, Y. C. Chen, M. S. Lee and M. C. Kao “Pyroelectric Properties of Sol-Gel Derived (Pb,Ca)TiO3 Thin Film Detectors”, Jpn. J. Appl. Phys., Part 1, Vol.39 (2000) pp.4064-4067.
[100] T. H. Meen M. C. Kao and Y. C. Chen “Pyroelectric Mg-modified PbTiO3 Thin Films and Devices for Thermal Infrared Detection” be accepted published in Appl. Phys. A (2004).
[101] Liu, W., S. K. Jong, Zhu and Weiguang “Preparation and properties of multilayer Pb(Zr,Ti)O3/PbTiO3 thin films for pyroelectric application”, Thin Solid Films Vol.371 (2000) pp. 254-258.
[102] C. C. Chang and C. S. Tang “An integrated pyroelectric infrared sensor with a PZT thin film”, Sensors and Actuators A, Vol.65 (1998) pp.171-174.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top