跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.30) 您好!臺灣時間:2021/07/25 12:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭必章
研究生(外文):Bi-Chang Cheng
論文名稱:以改良式桑克干涉儀設計水中聽音器
論文名稱(外文):The Novel Sagnac Interferometer for Designing Hydrophones
指導教授:陳茂雄陳茂雄引用關係
指導教授(外文):Mou-Hsin Chen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:101
中文關鍵詞:感測頭桑克干涉儀水中聽音器光纖感測器
外文關鍵詞:Sagnac InterferometerSensor HeadHydrophoneFiber Optic Sensors
相關次數:
  • 被引用被引用:4
  • 點閱點閱:131
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
光纖感測技術主要目的,是藉由光路架構去感應外界物理場的擾動,藉由解調系統,可將被物理場所調制的光訊號分離出來,並進而將物理場的特性還原。本論文提出一改良式桑克干涉儀架構,探討「光路系統」與「解調系統」,並對感測系統的靈敏度,及其動態範圍,作分析,討論它的優缺點。
本架構使用同調性低的光源,可降低成本,解決邁克遜干涉儀,馬赫-詹德干涉儀,必須使用高同調雷射光源的缺點,並解決桑克干涉儀一半路徑須遮蔽,感測源不能置於光路徑中間點之缺點。光纖有著極高的使用率,架構精簡,實驗佈放容易,同時訊號較強,適合佈置於水中,以感測微弱的水中聲場訊號。
為了搭配光路系統,製作各式感測頭用來偵測水下聲音訊號,並推導感測頭靈敏度之數學模型,使用Bruel & Kjaer 當作校正系統,可得到最佳的靈敏度為 -231.47 dB re V/uPa,動態範圍是40 dB。
The main purpose of the optical fiber sensing technology is to detect perturbation of physical fields. By means of some demodulating scheme, we can extract the real signal from those light beams which modified by physical fields. In the thesis, we proposed a configuration of modified Sagnac Interferometer as a sensing system. The optical sensing and demodulation system are exploited separately. Next, we study the advantages and disadvantages of the configuration. Besides, we are also measured the sensitivity and dynamic range.
The sensing system used a low coherence light source to reduce cost. This system also improves the shortage of a Sagnac Interferometer which has a blind point in the middle position. In addition, the structure is easily implemented and can detect weak signal in a high noisy water environment.
For matching the main structure, we make many kinds of sensing heads for detecting signals under water. We also use the mathematical model as the base of the theory. The dynamic range is 40 dB and the sensitivity is -231.47 dB re V/uPa.
頁次
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 x
符號表 xi
第一章 簡介
1.1文獻回顧 1
1.2研究動機 2
1.3 論文結構 3
第二章 基本感測原理與系統瓊斯矩陣之分析 5
2.1光纖干涉原理與同調長度 5
2.1.1光纖干涉原理 5
2.1.2干涉現象 6
2.2桑克干涉儀 7
2.3光元件與系統的瓊斯矩陣推導 8
2.3.1光纖元件之瓊斯矩陣 8
2.3.1.1光纖瓊斯矩陣 8
2.3.1.2光纖順時鐘方向圓環矩陣 9
2.3.1.3光纖逆時鐘方向圓環矩陣 9
2.3.1.4 3x3耦合器瓊斯矩陣 10
2.3.1.5 2X2耦合器瓊斯矩陣 11
2.3.2 法拉第旋轉鏡的瓊斯矩陣 11
2.3.3 改良式桑克干涉儀瓊斯矩陣 12
第三章 光路數學分析 16
3.1基本桑克干涉儀數學分析與訊號解調 16
3.1.1尚未加入調制訊號之基本桑克干涉儀 16
3.1.2尚未加入調制訊號之改良式桑克干涉儀 18
3.1.3加入調制訊號之改良式桑克干涉儀 20
3.2訊號解調單元 22
3.2.1相位調製器 22
3.2.2相位載波解調電路 24
3.3聲學基本介紹 24
3.3.1水中聲學簡介 24
3.3.2聲音感測頭基本原理 25
3.3.2.1聲音與感測頭相對關係 25
3.3.2.2感測頭數學模型 25
3.3.2.3感測頭靈敏度之提升 30
第四章 實驗與結果討論 32
4.1感測頭的製作方法 32

4.2光路基本元件的量測 34

4.2.1 2X2光纖耦合器的量測 34

4.2.2 法拉第旋轉鏡(FRM)的量測 36

4.3空氣中聲音的量測 37

4.4水中聲音的量測 39

4.5各式感測頭對水中聲音之量測比較 42

第五章 結論與未來展望
5.1 結論 45
5.1.1 8103和自製感測頭訊號強度之比較 45
5.1.2 自製感測頭之動態範圍與靈敏度比較 45
5.2 未來展望 45
5.2.1 系統性能的改善 46
5.2.2 未來期許 47
參考文獻 48
附圖 53
附表 82
附錄 95
中英文對照表 98
作者簡介 101
1. Eric Udd, Fiber Optical Sensor, pp.69-139, John Wiley and Sons, Inc., New York, 1991.
2. J. Mora, A. Diez, and M. V. Andrés, “A Magnetostrictive Sensor Interrogated by Fiber Gratings for DC-Current and Temperature Discrimination,” IEEE Photonics Technology Letters, Vol.12, pp.1680-1682, 2000.
3. Horatio Lamela Rivera, Jose A. Garcia-Souto, and J. Sanz, “Measurement of Mechanical Vibrations at Magnetic Cores of Power Transformers with Fiber-Optic Interferometric Intrinsic Sensor,” IEEE J. Quantum Electron., Vol. 6, No. 5, pp.788-797, 2000.
4. Ashish. M. Vengsarkar, Kent A. Murphy, Tuan A. Tran, and Richard O. Claus,“ Novel Fiber Optic Hydrophone for Ultrasonic Measurements, ” IEEE Ultrasonics Symposium, Vol.1, pp.603-606, 1988.
5. Fco Javier Madruga, Daniel González, Victor Álvarez, Juan Echevarria, Olga M. Conde, José Miguel, “ Field Test of Noncontact High Temperature Fiber Optic Transducer in a steel Production Plant, ” IEEE Optical Fiber Sensors Conference Technical Digest, Vol.1, pp.483-486, 2002.
6. J.Chen, and W. J. Bock, “A Novel Fiber-optic Pressure Sensor Using 1300nm Optical Components, ” IEEE Instrumentation and Measurement Technology Conference, Vol. 2, pp.1743-1746, USA, May 2002.
7. A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarization- insensitive fiber optic Michelson interferometer,” Electron. Lett., vol. 27, no. 6, pp. 518-520, 1991.
8. E. Udd, “Fiber-optic acoustic sensor based on the Sagnac interferometer,” Proc. Soc. Photo-Opt. Instrum. Eng., vol. 425, pp. 92-95, 1983.
9. K. Kråkenes and K. Bløtekjaer, “Effect of Laser Phase Noise in Sagnac Interferometers,” IEEE J. Lightwave Tech., vol. 11, no. 4, pp. 643-653, 1993.
10. K. P. Koo, A. B. Tveten, and A. Dandridge, “Passive stabilization scheme for fiber interferometry using (3×3) fiber directional couplers,” Appl. Phys. Lett., vol. 41, pp. 617-620, 1982.
11. B. Lee, “Review of the present status of optical fiber sensors,” J. Optical Fiber Tech., vol. 9, pp. 57-79, 2003.
12. A. Dandridge and G. B. Cogdell, “Fiber optic sensors for Navy applications,” IEEE LCS, vol. 2, pp. 82-89, 1991.
13. G. F. McDearmon, “Analysis of a Push-Pull Fiber Optic Hydrophone,” J. Lightwave Tech., Vol.5, pp.645-647, 1987.
14. G. G. Thomas, A. B. Joseph, D. Anthony, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron., Vol.18, pp.626-661, 1982.
15. Eric Udd, Fiber Optical Sensors, pp.273-274, John Wiley and Sons,
Inc., New York, 1991.
16. G. B. Hocker, “Fiber-Optic Sensing of Pressure and Temperature,” Appl. Opt., Vol.18, No.9, pp.1445-1448, 1979.
17.林螢光, 光電子學原理元件與應用, pp.4-44~4-51, 全華書局, 台北市, 2001.
18. Eric Udd, Fiber Optical Sensors, pp.45-47, John Wiley and Sons, Inc.
,New York, 1991.
19. Keller, Gettys, Skove, Physics, pp.795-800, McGraw Hill, New York,
1996.
20. A. S. Siddiqui, A. Yu, “Theory of a Novel High Sensitivity Optical Fiber Gyroscope,” Opt., Vol.140, pp.150-156, 1993.
21. Lasse Vines, Gunnar Wang, “Sagnac Interferometer Design for Differential Rotation Measurement,” Forsvarets Forskningsinstitutt, pp.395-398, 2002.
22.謝彥吏, 馬克-詹德與桑克干涉儀混合式光纖偵漏系統之性能提昇, pp.27-28, 國立中山大學,電機工程學系碩士論文, 高雄市, 2001.
23. W. W. Lin, S. T. Shih, M. H. Chen, and S. C. Huang, “The Transfer Functions of PZT Phase Modulators in Optical Fiber Sensors,” Proc.
Natl. Sci. Counc., ROC(A)., Vol.18, No.6, pp.570-575, 1994.
24. A. Dandridge, A. B. Tveten and T. G. Giallorenzi, “Homodyne Demodulator Scheme for Fiber Optic Sensors Using Phase Generated Carrier,” IEEE J. Quantum Electron., Vol.QE-18, No.10, pp.1647-1652, 1982.
25. 劉金源, 海洋聲學導論, pp.1-33, 中山大學出版社, 高雄市, 2002.
26. J. A. Bucaro, N. Lagakos, J. H. Cole, “Fiber Optic Acoustic Transduction,” Physical Acoustics, Vol.16, pp.393-395, Academic Press, New York, 1982.
27. 李長芳, 無極化感受性光纖邁克遜干涉感測系統之設計, pp.17-22, 國立中山大學, 電機工程學系碩士論文, 高雄市, 1996.
28.H. C. James, T. G. Giallorenzi, D. Anthony, “Twenty-five Years of Interferometer Fiber Optic Acoustic Sensors at Naval Research Laboratory,” Naval Research Laboratory, Vol.62, pp.3-7, 1977.
29. J. A. Bucaro, N. Lagakos, J. H. Cole, “Fiber Optic Acoustic Transduction,” Physical Acoustics, Vol.16 pp.394-395, Academic Press, New York, 1982.
30. 李長芳, 無極化感受性光纖邁克遜干涉感測系統之設計, pp.18-19, 國立中山大學, 電機工程學系碩士論文, 高雄市, 1996.
31.B. Budiansky, “Pressure Sensitivity of A Clad Optical Fiber,” Appl. Opt., Vol.18, pp.4085-4088, 1979.
32. 呂建立, 干涉式光纖光柵麥克風設計, pp.26-29, 國立中山大學, 電機工程學系碩士論文, 高雄市, 2003.
33. 施松村,無極化感受性麥克遜光纖聲感測器系統之分析, pp59-66, 國立中山大學, 電機工程學系博士論文, 高雄市, 1996.
34.C.Wurster, J.Staudenraus, W.Eisenmenger, “The Fiber Optic Probe Hydrophone,” IEEE Ultrasonics Symposium, Vol.2, pp.941-944, 1994.
35.B.Budiansky and Etal, “Pressure Sensitivity of a Clad Optical Fiber,” Applied Optics, Vol.4, pp.4085-4088, 1979.
36.N.Lagakos, E.U.Schnaus, J.H.Cole, “Optimizing Fiber Coating for Interferometric Acoustic Sensors,” IEEE Trans. Microwave Theory Tech., Vol.30, pp.529-535, 1982.
37.Nicholas Lagakos, Joseph A. Bucaro, Paul E. Ehrenfeuchter, “Fiber-embedded Mandrel-stiffened Planar Acoustic Sensor,” J.Acoust.Soc.Am., Vol.3, pp.1618-1622, 1995.
38.J.A.Bucaro, B.H.Houston, E.G.Williams, “Fiber-optic Air-backed Hydrophone Transduction Mechanisms,” J.Acoust.Soc.Am., Vol.1, pp.451-453, 1991.
39. Nicholas Lagakos, Joseph A. Bucaro, “Planar Fiber Optic Acoustic Velocity Sensor,” J.Acoust.Soc.Am., Vol.3, pp.1660-1663, 1995.
40.N.L AGAKOS, P.Ehrenfeuchter, T.R.Hickman, “Planar Flexible Fiber-optic Interferometric Acoustic Acoustic Sensor,” Opt. Lett., Vol.13, pp.788-790, 1988.
41.A. B. Tveten, A. M. Yurek, Y. Y. Chao, “A High Frequency Fiber Optic Hydrophone,” Naval Research Laboratory, Vol.8, pp.350-354, 1992.
42.J. A. Bucaro, N. Lagakos, J. H. Cole, “Fiber Optic Acoustic Transduction,” Physical Acoustics, Vol.16, pp.390-395, Academic Press, New York, 1982.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top