跳到主要內容

臺灣博碩士論文加值系統

(3.238.135.174) 您好!臺灣時間:2021/08/05 06:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江永賢
研究生(外文):Yung-Hsien Chiang
論文名稱:在MPLS網路上針對即時多媒體資料流具有混合式Local/Global的動態恢復機制
論文名稱(外文):A Dynamic Recovery with Mixed Local/Global Repair for Real-Time Multimedia Traffic on MPLS Networks
指導教授:許蒼嶺
指導教授(外文):tsang-ling sheu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:62
中文關鍵詞:IPv6Real-Time TrafficTraffic EngineeringMPLSLocal/Global RepairDynamic Rerouting
外文關鍵詞:Local/Global RepairReal-Time Traffic.Traffic EngineeringMPLSDynamic ReroutingIPv6
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是針對即時多媒體資料流的斷線恢復機制,當斷線發生時,即時多媒體資料流的封包不能在網路上停留太久,我們將尋找存在Local Repair Path,將封包儘速送往目的地,並且送出Probe Packets來探測眾多Local Repair Path, Egress收到從各路徑上的Probe Packets之後,選擇最為適合即時資料流的資料傳輸路徑,並由Egress送出更換資料傳輸路徑的訊息,來改變即時多媒體資料流到最適合傳輸路徑上。因為我們使用已經建立好的LSP,當作是Local Repair Path,所以無法掌握Local Repair Path上的網路狀態,故持續發送Probe Packets,監視所有Local Repair Path上的網路狀態,Egress會週期性選擇最適合即時多媒體的傳送路徑和送出更換資料傳輸路徑的訊息,來保持即時多媒體資料流在最適合的LSP中傳送。

由MNS的模擬實驗中證實得知,當斷線發生時,那些原本要繞回Ingress的即時多媒體資料,可以經由Local Repair Path快速送達目的地,並且封包沒有Out-of-Order的情況出現,而Probe Packets的探測和選擇資料傳輸路徑的功能,監視每條Local Repair Path的End-To-End Delay,讓即時多媒體資料流保持在最佳路徑上傳送,儘量符合多媒體資料流的End-To-End Delay的要求。
In this Thesis, we present a fault recovery mechanism by considering both local and global repairs for real-time traffic conveyed over MPLS networks. To meet the end-to-end time constraints of real-time traffic flows, once a link failure occurs, the real-time packets are sent via the most nearby local repair path if one can be identified, while at the same time the probe packets are sent to the Egress router over every possible local repair paths. By monitoring all of the incoming probe packets, the Egress router can determine which path is the most suitable repair path using the minimum-delay-deviation criterion and then sends out all the remaining packets over the new path. To fulfill the delay requirements of real-time flows whenever link failures occur, the probe packets need to be periodically sent out to reflect the dynamic change of traffic loads on the pre-established LSPs.

The simulation results, after running on the MSN, have demonstrated that our recovery scheme not only forwards the packets of real-time flows in time over the local repair paths, but also prevents them from possible out-of-order situations. Besides, the proposed scheme of dynamic rerouting assist us in achieving the end-to-end delay guarantee for real-time traffic on MPLS networks.
第一章 導論……..……………………………………………………………………………1
1.1 研究動機………………………………………………………..…………………...1
1.2 研究主題與研究成果………………………………………………………..……...1
1.3 章節介紹…………………………………………………………….………………4

第二章 MPLS斷線恢復與即時多媒體資料流介紹……………………………..………….5
2.1相關名詞介紹………………………………………………………………………..5
2.2 MPLS斷線恢復機制分類………………………………………….………………..7
2.2.1 Protection Switching、Rerouting……………………………….……………..7
2.2.2 Pre-Establish、Pre-Qualified、Establish-On-Demand………………...……….8
2.2.3 Local Repair、Global Repair、Alternate Egress Repair……………..………8
2.2.4 工作路徑與備用路徑的關係……………………………………..………..10
2.3 現今斷線恢復機制的研究方向介紹…………………………………..………….11
2.3.1 尋找和選擇備用路徑………………………..……………………………..11
2.3.2 斷線後資料流分流…………………………………..……………………..11
2.3.3 備用路徑資源分享…………………………………..……………………..12
2.3.4 多重斷線恢復機制……………………………………..…………………..12
2.3.5 斷線恢復切換路徑機制……………………………………..……………..13
2.3.5.1 Makam Approach…………………………………………………….13
2.3.5.2 Haskin approach……………………………………………………...13
2.3.5.3 Hundessa Approach…………………………………………………..14
2.4 即時多媒體資料流與斷線恢復機制關係…………………………………...……15

第三章 即時動態斷線恢復機制設計………………………………………………………17
3.1 即時動態斷線恢復機制介紹………………………………………….…………..17
3.2 即時動態斷線恢復機制功能介紹………………………………….………..……20
3.2.1 即時多媒體資料流的封包格式……………………….…….………..……20
3.2.2 FIS格式和功能………………………………………………..……………21
3.2.3 Reverse Labeling Scheme的介紹…………………………..……………….22
3.2.4 發送Probe Packet……………………………………………..……………25
3.2.5 選擇最佳的替代路徑……………...……………………………………….26
3.2.6 Change Data Transport Path Message……………………………………….27
3.2.7 Update Timestamp…………………………………………….……………..28
3.2.8 即時資料流的優先權……………………………………………………....28
3.3 即時動態斷線恢復機制演算法………….……………………..…………………29
3.3.1 Ingress LSR演算法………………..……………………..…………………30
3.3.1 Core LSR演算法…………………………………………………………....32
3.3.3 Egress LSR演算法……………………..…………………….……………..35

第四章 模擬架構與結果分析………………………………………...…………………….36
4.1 MNS的運作和改進……………………………………………..………………….36
4.1.1 MNS的MPLS節點架構………...………………………………………….36
4.1.2 MNS的物件關係……………..……………………………………………..38
4.1.2.1 修改的功能模組………………………………………..…………...39
4.1.2.2 新增的功能模組……………………………………….……………40
4.2 MNS模擬網路架構…………………………………………………..………….…42
4.3 MNS模擬結果和分析……………………………………………...………………43
4.3.1 四種斷線恢復機制比較…………………………………..………………..43
4.3.2 DRRT的Probe Packet功能測試………………………….……………….47
4.3.3 DRRT針對不同Link Load情形……………………………….………….48

第五章 結論與未來研究方向………………………………………………………………52
5.1 結論………………………………………………………….……………………..52
5.2 未來研究方向………………………………………………...……………………54

參考文獻………………………………………………………………………..……………56
索引………………………………………………………………………………..…………60
[1] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol Label Switching Architecture,” RFC 3031, January 2001.
[2] E. Rosen, D. Tappan, G. Fedorkow, Y. Rekhter, D. Farinacci, T. Li, and A. Conta, “MPLS Label Stack Encoding,” RFC 3032, January 2001.
[3] J. Lawrence, “Designing multiprotocol label switching networks,” IEEE Communications Magazine, Volume 39, Issue 7, July 2001, pp.134 –142.
[4] D. Awduche, J. Malcolm, J. Agogbua, M. O''Dell ,and J. McManus, “Requirements for Traffic Engineering Over MPLS,” RFC 2702, September 1999.
[5] G. Swallow, “MPLS advantages for traffic engineering,” IEEE Communications Magazine, Volume 37, Issue 12, Dec 1999, pp.54-57.
[6] Xipeng Xiao, A. Hannan, B. Bailey ,and L.M. Ni, “Traffic engineering with MPLS in the Internet,” IEEE Network , Volume 14, Issue 2, Mar/Apr 2000, pp.28-33.
[7] V.Ed. Sharma and F.Ed. Hellstrand, “Framework for Multi-Protocol Label Switching (MPLS)-based Recovery,” RFC3469, February 2003.
[8] A. Juttner, B. Szviatovszki, A. Szentesi, D. Orincsay ,and J. Harmatos, “On-demand optimization of label switched paths in MPLS networks,” Ninth International Conference on Computer Communications and Networks, 2000, Proceedings, pp.107-113.
[9] S.Makam, V.Sharma, K.Owens, and C.Huang, “Protection/Restoration of MPLS Networks,” Internet-Draft (draft-makam-mpls-protection-00.txt), October 1999.
[10] Sangsik Yoon, Hyunseok Lee, Deokjai Choi, Youngcheol Kim, Gueesang Lee ,and Mike Lee, “An efficient recovery mechanism for MPLS-based protection LSP,” 4tth IEEE International Conference on ATM and High Speed Intelligent Internet Symposium, 2001, pp.75-79.
[11] T.H. Oh, T.M. Chen, and J.L. Kennington, “Fault restoration and spare capacity allocation with QoS constraints for MPLS networks”, IEEE Global Telecommunications Conference, Volume 3, Dec 2000, pp.1731-1735.
[12] D. Gan, “A method for MPLS LSP fast-reroute using RSVP detours,” Internet Draft (draft-gan-fast-reroute-00.txt), April 2001.
[13] David Griffith, and SuKyoung Lee, “A 1+1 protection architecture for optical burst switched networks”,IEEE Journal on Selected Areas in Communications, Volume 21 , Nov. 2003, pp.1384-1398.
[14] Yizhi Xiong, Dahai Xu, and Chunming Qiao, “Achieving fast and bandwidth-efficient shared-path protection”, Journal of Lightwave Technology, Volume: 21, Feb. 2003, pp.365-371.
[15] C. Assi, A. Khalil, N. Ghani, and M. Ali, “Provisioning algorithms in survivable optical networks with shared protection” Proceedings of the Eighth IEEE International Symposium on Computers and Communication, 2003, pp.666-671.
[16] Dahai Xu, Yizhi Xiong, and Chunming Qiao, “Novel algorithms for shared segment protection” IEEE Journal on Selected Areas in Communications, Volume: 21, Issue: 8, Oct. 2003, pp.1320-1331.
[17] Hongxia Long, and Subin Shen, ”A mechanism for restorable QoS routing” International Conference on Computer Networks and Mobile Computing, ICCNMC 2003,Oct. 2003, pp.61-67.
[18] A. Dana, A.K. Zadeh, K. Badie, M.E. Kalantari, and N. Reyhani, “LSP restoration in MPLS network using case-based reasoning approach” International Conference on Communication Technology Proceedings, 2003. Volume: 1 , April 2003, pp.462-468.
[19] J.L. Marzo, E. Calle, C. Scoglio, and T. Anjah,”QoS online routing and MPLS multilevel protection: a survey”, IEEE Communications Magazine,Volume: 41 , Oct 2003, pp.126-132.
[20] B.G. Jozsa, D. Orincsay, and ,A. Kern, “Surviving multiple network failures using shared backup path protection” Proceedings of the Eighth IEEE International Symposium on Computers and Communication, 2003, pp.1333-1340.
[21]D. Haskin and R. Krishnan, “A Method for Setting an Alternative Label Switched Paths to Handle Fast Reroute,” Internet-Draft (draft-haskin-mpls-fast-reroute-05.txt), November 2000.
[22] L.Hundessa and J.D.Pascual, “Fast Rerouting Mechanism for a Protected Label Switched Path,” Tenth International Conference on IEEE Computer Communications and Networks, 2001, Proceedings, pp.527 –530.
[23] Achim Autenrieth, Technische Universitat Munchen, Andreas Kirstadter, and Siemens AG, “Engineering end-to-end IP resilience using resilience-differentiated QoS”, IEEE Communications Magazine, Volume: 40 , Jan. 2002, pp.50 – 57.
[24] A.Autenricth, “Recovery time analysis of differentiated resilience in mpls”, Design of Reliable Communication Networks, Oct. 19-22, 2003, pp.333-340
[25] LBL, Xerox PARC, USB, and USC/ISI, “network simulator-ns(version 2)”, http://www.isi.edu/nsnam/ns/
[26] GAEIL AHN, WOOJIK CHUN, “design and implementation of MPLS network simulator(MNS) supporting QoS”, 15th international conference on information networking,(ICOIN 2001), Processdings, pp.694-699.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊