跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/01 04:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許勝雄
研究生(外文):Sheng-Hsiung Hsu
論文名稱:MUSIC演算法於超寬頻多重路徑通道之訊號抵達時間估測及分析
論文名稱(外文):Analysis and Estimation of Signal Arrival Time Based on MUSIC Algorithm for UWB Multipath Channels
指導教授:萬欽德
指導教授(外文):Chin-Der Wann
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:87
中文關鍵詞:超寬頻時間抵達多重訊號區別法
外文關鍵詞:Ultra WideBandTime of ArrivalMultiple Signal Classification
相關次數:
  • 被引用被引用:2
  • 點閱點閱:426
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
於超寬頻脈衝無線電(Ultra-Wideband Impulse Radio)系統中,本論文使用多重信號區別演算法(Multiple Signal Classification, MSUIC)估測訊號抵達時間。基於時間資訊的無線室內定位系統,能夠正確估測訊號抵達時間是相當重要的。大部分用於室內定位的無線通訊系統皆會受到嚴重的多重路徑訊號干擾,因此如何正確地決定訊號抵達時間是一個重要的議題。超寬頻訊號雖然具有很好的多重路徑時間解析特性,可以使室內定位的準確性增加,但第一個訊號抵達路徑的不可解析,仍然會造成訊號抵達時間的估測錯誤。於超寬頻無線系統中,本文提出改良式的時域MUSIC演算法,估測訊號最短的抵達時間。於兩條多重路徑通道模型中,模擬分析演算法的解析能力和最短訊號抵達時間的估測錯誤方差。
In this thesis, an estimation method adapted from MUSIC algorithm is presented for estimation of signal arrival time for impulse radio UWB systems. An accurate estimate of signal arrival time is considered essential in time-based wireless and indoor location systems. Since most wireless communications systems used for indoor position location may suffer from dense multipath situation, the accuracy of determining signal arrival time become an important issue for the time-based location systems. The fine resolution of UWB signals provides potentially accurate ranging for indoor location applications. However, the ambiguity caused by the unresolved first arrival path may still yield an error in determining the true signal arrival time. The presented method uses improved MUSIC techniques in time domains to estimate the shortest and the real signal arrival time for UWB radio link. For a two-multipath case, analysis and simulation results of multipath resolvability and the variance of estimation errors of signal arrival time are discussed.
感謝詞……………………………………………………………i
中文摘要…………………………………………………………ii
英文摘要…………………………………………………………iii
目錄………………………………………………………………iv
圖目錄……………………………………………………………vi
表目錄……………………………………………………………viii

第一章 緒言………………………………………………………1
1.1 文獻探討 ……………………………………………………1
1.2 研究動機 ……………………………………………………3
1.3 論文架構 ……………………………………………………3
第二章 超寬頻通訊系統…………………………………………4
2.1 超寬頻系統定義的頻寬 ……………………………………4
2.2 超寬頻的性能 ………………………………………………5
2.3 超寬頻的挑戰 ………………………………………………8
2.4 超寬頻多重路徑通道 ………………………………………9
第三章 高解析度演算法 ………………………………………10
3.1 簡介…………………………………………………………10
3.2 多重路徑傳播模型…………………………………………13
3.3 傳統方法與最大相似法……………………………………14
3.4 多重信號區別演算法………………………………………19
3.5 訊號子空間逼近法…………………………………………22
第四章DOA與TOA模型之比較……………………………………25
4.1簡介 …………………………………………………………25
4.2 等間距線性陣列估測訊號抵達方位角……………………25
4.3 訊號抵達方位角與訊號抵達時間模型之參數對照………29
4.4 解析機率……………………………………………………35
第五章 MUSIC演算法估測訊號抵達時間………………………39
5.1 簡介…………………………………………………………39
5.2 時域 MUSIC演算法電腦模擬………………………………39
5.2.1 模擬參數定義……………………………………………40
5.2.2 模擬產生現象……………………………………………42
5.2.3 電腦模擬…………………………………………………46
5.3 頻域 MUSIC演算法…………………………………………58
5.3.1 頻域訊號模型……………………………………………58
5.3.2 MUSIC演算法於頻域模型 ………………………………59
5.4 空間平滑法…………………………………………………62
5.5 改良式 MUSIC演算法………………………………………69
第六章 討論與建議 ……………………………………………79
6.1 結論…………………………………………………………79
6.2 建議…………………………………………………………79
附錄 A……………………………………………………………82
附錄 B……………………………………………………………83
參考文獻…………………………………………………………84
[1] L. Ge, G. Yue, and S. Affes, “On the BER Performance of Pulse-Position-Modulation UWB Radio in Multipath Channels,” IEEE Conference on Ultra Wideband Systems and Technologies, pp. 231-234, May 2002.

[2] R. J.-M. Cramer, M. Z. Win, and R. A. Scholtz, “Evaluation of the Multipath Characteristics of the Impulse Radio Channel,” The Ninth IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, vol. 2, pp. 864-868, Sept. 1998.

[3] Atlas Compliance, http://www.atlasce.com/subpart_f.htm

[4] J. Foerster, E. Green, S. Somayazulu, and D. Leeper, “Ultra-Wideband Technology for Short- or Medium-Range Wireless Communications,” Intel technology Journal, Q2, pp. 1-11, 2001.

[5] M. Z. Win and R. A. Scholtz, “Impulse Radio: How It Works,” IEEE
Communications Letters, vol. 2, pp. 36-38, Feb. 1998.

[6] M. Z. Win and R.A. Scholtz, “Characterization of Ultra-Wide Bandwidth Wireless Indoor Channels: A Communication-Theoretic View,” IEEE Journal on Selected Areas in Communications, vol. 20, pp. 1613-1627, Dec. 2002.

[7] M. Z. Win, R. A. Scholtz, and M. A. Barnes, “Ultra-Wide Bandwidth Signal Propagation for Indoor Wireless Communications,” IEEE International Conference on Communications, vol. 1, pp. 56-60, June 1997.

[8] T. S. Rappaport, Wireless Communications Principles and Practices, Second Edition, Prentice Hall, 2002.

[9] A. F. Molisch, J. R. Foerster, and M. Pendergrass, “Channel Models
for Ultrawideband Personal Area Networks,” IEEE Wireless
Communications, vol. 10, pp. 14-21, Dec. 2003.

[10] H. Saarnisaari, “ML Time Delay Estimation in a Multipath Channel,” IEEE 4th International Symposium on Spread Spectrum Techniques and Applications Proceedings, vol. 3, pp. 1007-1011, Sept. 1996.
[11] J. S. Wang and Z. X. Shen, “An Improved MUSIC TOA Estimator for RFID Positioning,” RADAR 2002, pp. 478-48, Oct. 2002.
[12] L. Krasny and H. Koorapaty, “Performance of Time of Arrival Estimation Based on Signal Eigen Vectors,” The 11th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, vol. 2, pp. 1285-1289, Sept. 2000.

[13] T. Manabe and H. Takai, “Superresolution of Multipath Delay Profiles Measured by PN Correlation Method,” IEEE Transactions on Antennas and Propagation, vol. 40, pp. 500-509, May 1992.

[14] M. A. Pallas and G. Jourdain, “Active High Resolution Time Delay Estimation for Large BT Signals,” IEEE Transactions on Signal Processing, vol. 39, pp. 781-788, April 1991.

[15] Y. Jeong, H. Ryou, and C. Lee, “A High Resolution Time Delay Estimation Technique in Frequency Domain for Positioning System,” IEEE 56th Vehicular Technology Conference Proceedings, vol. 4, pp. 2318-2321, Sept. 2002.

[16] J. Winter and C. Wengerter, “High Resolution Estimation of the Time of Arrival for GSM Location,” IEEE 51st Vehicular Technology Conference Proceedings, vol. 2, pp. 1343-1347, May 2000.

[17] X. Li and K. Pahlavan, “Super-Resolution TOA Estimation with Diversity for Indoor Geolocation,” IEEE Transactions on Wireless Communications, vol. 3, pp. 224-234, Jan. 2004.

[18] H. Saarnisaari, “TLS-ESPRIT in a Time Delay Estimation,” IEEE 47th Vehicular Technology Conference, vol. 3, pp. 1619-1623, May 1997.

[19] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Second Edition, Prentice Hall, 1993.

[20] R. O. Schmidt, “Multiple Emitter Location and Signal Parameter Estimation,” IEEE Transactions on Antennas and Propagation, vol. 34, pp. 276-280, Mar. 1986.

[21] M. Wax, and T. J. Shan, and T. Kailath, “Spatial-Temporal Spectral Analysis by Eigenstructure Methods,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 32, pp. 817-827, Aug. 1984.

[22] T. J. Shan, M. Wax, and T. Kailath, “On Spatial Smoothing for Direction-of-Arrival Estimation of Coherent Signals,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 33, pp. 806-811, Aug. 1985.

[23] M. Viberg and B. Ottersten, ”Sensor Array Processing Based on Subspace Fitting,” IEEE Transactions on Signal Processing, Vol.39, pp. 1110-1121, May 1991.

[24] R. Roy and T. Kailth, ”ESPRIT-Estimation of Signal Parameters via Rotational Invariance Techniques,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.37, pp. 984-995, July 1989.

[25] H. Krim and M. Viberg, “Two Decades of Array Signal Processing Research,” IEEE Signal Processing Magazine, vol. 13, pp. 67-94, July 1996.

[26] V. Trees, Optimum Array Processing Part IV Detection,Estimation, and Modulation Theory, Wiley, 2002.


[27] T. W. Anderson, “Asympotic Theory for Principle Component Analysis,” Ann. Math. Stat. , vol. 34, pp.122-148, February 1963.

[28] J. H. Wilkinson, The Algebraic Eigenvalue Problem, New York Oxford University Press, 1965.

[29] D. R. Brillinger, Time Series Data Analysis and Theory, New York Holt, Rinehart and Winston, 1975.

[30] M. Kaveh and A. Barabell, “The Statistical Performance of the MUSIC and the Minimum-Norm Algorithms in Resolving Plane Waves in Noise,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 34, pp. 331-341, Apr. 1986.

[31] P. Stoica and A. Nehorai, “Music, Maximum Likelihood, and Cramer-Rao Bound,” IEEE Transactions on Acoustic, Speech, and Signal Processing, vol. 37, pp. 720-741, May 1989.

[32] D. R. Farrier, D. J. Jeffries, and R. Mardani, “Theoretical Performance Prediction of the MUSIC Algorithm,” IEE Proceedings-Radar, Sonar and Navigation, vol. 135, pp. 216-224, June 1988.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top