跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/02 19:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪崑銘
研究生(外文):Kuen-Ming Hung
論文名稱:正交分頻多工系統中峰均值之研究
論文名稱(外文):Study on Peak-to-Average Power Ratio of OFDM Systems
指導教授:陳巽璋
指導教授(外文):Shiunn-Jang Chern
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:86
中文關鍵詞:脈波整形峰均值峰值功率對平均功率比值正交分頻多工
外文關鍵詞:OFDMPAPRPeak-to-Average Power Ratiopulse shapingOrthogonal Frequency Division Multiplexing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:94
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來正交分頻多工系統的發展頗受矚目,正交分頻多工系統可以應用在許多不同的方面上,如數位音訊廣播、高畫質電視地面廣播、非對稱數位用戶迴路…等等,採用正交分頻多工系統的理由有幾個,第一,正交分頻多工系統可以有效地對抗多重路徑效應,在給定相同程度的延遲擴散下,正交分頻多工系統的實現會比單一載波系統來的簡單,因為正交分頻多工系統可以簡單地利用保護時間而不需要太複雜的等化器,就可以對抗延遲擴散所造成的各種效應;第二,正交分頻多工系統利用多個子載波來平行地傳送資料,可以達到整體高資料速率的目的;第三,正交分頻多工系統可以有效地對抗窄頻帶的干擾。但是另一方面,正交分頻多工系統同時也存在有兩個缺點,一個是對頻率偏移太敏感,另一個則是正交分頻多工符號具有太高的峰均值。
本篇論文的重點是放在解決正交分頻多工符號的高峰均值問題上。脈波整形法是一個可以有效地降低正交分頻多工符號峰均值的方法,而且可以適用於任意子載波數的正交分頻多工系統,因此在使用上是非常具有彈性的。而脈波整形法如果和選擇對映法或是部分傳輸序列法相比,脈波整形法並不需要額外的反快速傅立葉轉換處理器,因此系統的實現複雜度會比較小,而如果跟峰值剪截法相比,脈波整形法的位元錯誤率效能表現會比較好,因為脈波整形法不對正交分頻多工符號造成任何失真。根據脈波整形法,本論文找到一個不錯的波形,這個波形具有讓正交分頻多工符號峰均值不超過2左右的能力。
In recent years, the development of OFDM system has received a lot of attention. Some examples of existing systems where OFDM system is used are digital audio broadcasting, high-definition television terrestrial broadcasting, asymmetric digital subcarrier lines and so on. There are several reasons for using OFDM systems. First, OFDM system is an efficient way to deal with multipath effect. Under a fixed amount of delay spread, the implementation complexity of OFDM system is much less than that of single-carrier system. The reason is that OFDM system can simply use guard time to process delay spread without a complex equalizer. Second, OFDM system can achieve high data rate to transmit by using large number of subcarriers. Third, OFDM system can also efficiently combat with narrow band interference. On the other hand, OFDM system also has two main drawbacks. One is more sensitive to frequency offset, the other is higher PAPR.
This thesis focuses on the PAPR problem. Pulse shaping method is an effective way to solve this problem. It can be used for any number of subcarriers of OFDM systems, so it is very flexible. It doesn’t have any additional IFFTs in comparison to the selected mapping or partial transmit sequence method. Its implementation is simpler. And because it also doesn’t distort the OFDM symbols, its bit error performance should be better than the clipping method. According to the pulse shaping method, we get a better waveform that can make the PAPR of OFDM symbols do not exceed about 2.
中文摘要 i
Abstract ii
本文目錄 iii
圖目錄 v
表目錄 ix
第一章 前言 1
1.1 研究背景 1
1.2 各章提要 2
第二章 正交分頻多工系統概觀 4
2.1 正交分頻多工系統的基本特性 4
2.2 正交分頻多工系統的基本架構 5
2.2.1 連續時間型式的正交分頻多工系統架構 5
2.2.2 離散時間型式的正交分頻多工系統架構 9
2.2.3 保護時間、循環延展和窗型化 10
2.3 峰均值 12
2.3.1 正交分頻多工符號的峰均值 13
2.3.2 離散時間型式正交分頻多工符號峰均值的機率分佈 16
2.3.3 連續時間型式正交分頻多工符號峰均值的機率分佈 19
2.4 降低正交分頻多工符號峰均值的方法 20
2.4.1 信號失真 20
2.4.2 相位旋轉 24
2.4.3 編碼 27
第三章 脈波整形法 28
3.1 脈波外形對正交分頻多工符號的影響 28
3.2 現有利用脈波整形法降低正交分頻多工符號峰均值的方法 31
3.2.1 時域循環位移 31
3.2.2 母時域波形的限制條件 34
第四章 母時域波形的選擇 39
4.1 正交分頻多工符號的最大峰均值與子載波數之間的關係 39
4.1.1 數學分析討論 39
4.1.2 程式模擬結果 46
4.2 較佳的母時域波形 59
4.2.1 較佳母時域波形所具有的特性 59
4.2.2 母時域波形的數學通式 68
4.2.3 較佳母時域波形的實例 75
第五章 結論 79
附錄1 80
附錄2 81
參考文獻 83
[1] L. J. Cimini, Jr., “Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing,” IEEE Trans. Communications, pp. 665-675, July 1985.
[2] R. van Nee and R. Prasad, “OFDM wireless multimedia communications,” Arthech House Publishers, Dec. 1999.
[3] W. Y. Zou and Y. Wu, “COFDM: an overview,” IEEE Trans. on Broadcasting, pp. 1-8, Mar. 1995.
[4] R. van Nee and A. de Wild, “Reducting the peak-to-average power ratio of OFDM,” Proc. IEEE VTC ‘98, pp. 2072-2076, May 1998.
[5] X. Li and L. J. Cimini, Jr., “Effects of clipping and filtering on the performance of OFDM,” Proc. IEEE VTC ‘97, pp. 1634-1638, May 1997
[6] D. Wulich and L. Goldfeld, “Reduction of peak factor in orthogonal multicarrier modulation by amplitude limiting and coding,” IEEE Trans. on Communication, pp. 18-21, Jan. 1999
[7] J. Armstrong, “New OFDM peak-to-average power reduction scheme,” Proc. IEEE VTC ‘01, pp. 756-760, May 2001.
[8] J. Armstrong, “Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering,” Electronics Letters, pp. 246-247, Feb. 2002.
[9] N. Ermolova, “A comparison of two schemes for peak-to-average power ratio reduction in a multicarrier transmission,” Proc. IEEE ICCSC ‘02, pp. 102-105, June 2002
[10] M. Pauli and P. Kuchenbecker, “On the reduction of the out-of-band radiation of OFDM-signals,” Proc. IEEE ICC ‘98, pp. 1304-1308, June 1998
[11] T. May and H. Rohling, “Reducing the peak-to-average power ratio in OFDM radio transmission systems,” Proc. IEEE VTC ‘98, pp. 2474-2478, May 1998.
[12] M. Lampe and H. Rohling, “Reducing out-of-band emissions due to nonlinearities in OFDM systems,” Proc. IEEE VTC ‘99, pp. 2255-2259, May 1999.
[13] R. W. Bauml, R. F. H. Fischer and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping,” Electronics Letters, pp. 2056-2057, Oct. 1996.
[14] S. H. Muller and J. B. Huber, “OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences,” Electronics Letters, pp. 368-369, Feb. 1997.
[15] S. H. Muller and J. B. Huber, “A novel peak power reduction scheme for OFDM,” IEEE ISPIMRC ‘97, pp. 1090-1094, Sep. 1997.
[16] S. H. Muller and J. B. Huber, “A comparison of peak power reduction schemes for OFDM,” IEEE GLOBECOM ‘97, pp. 1-5, Nov. 1997.
[17] S. G. Kang, J. G. Kim and E. K. Joo, “A novel subblock partition scheme for partial transmit sequence OFDM,” IEEE Trans. on Broadcasting, pp. 333-338, Sep. 1999.
[18] L. J. Cimini, Jr. and N. R. Sollenberger, “Peak-to-average power ratio reduction of an OFDM signal using partial transmit sequences,” IEEE Communications Letters, pp. 86-88, Mar. 2000.
[19] A. D. S. Jayalath and C. Tellambura, “Adaptive PTS approach for reduction of peak-to-average power ratio of OFDM signal,” Electronics Letters, pp. 1226-1228, July 2000.
[20] A. D. S. Jayalath, C. Tellambura and H. Wu, “Reduced complexity PTS and new phase sequences for SLM to reduce PAP of an OFDM signal,” Proc. IEEE VTC ‘00, pp. 1914-1917, May 2000.
[21] A. E. Jones, T. A. Wilkinson and S. K. Barton, “Block coding scheme for reduction of peak to mean envelope power ratio of multicarrier transmission schemes,” Electronic Letters, pp. 2098-2099, Dec. 1994.
[22] Y. Zhang, A. Yongacoglu and J. Y. Chouinard, “Reducing multicarrier transmission peak power with a modified simple block code,” Proc. IEEE ICCT, pp. 578-580, Aug. 2000.
[23] S. J. Shepherd, P. W. J. Van Eetvelt, C. W. Wyatt-Millington and S. K. Barton, “Simple coding scheme to reduce peak factor in QPSK multicarrier modulation,” Electronic Letters, pp. 1131-1132, July 1995.
[24] T. A. Wilkinson and A. E. Jones, “Minimisation of the peak to mean envelope power ratio of multicarrier transmission schemes by block coding,” Proc. IEEE VTC ‘95, pp. 825-829, July 1995.
[25] M. J. E. Golay, “Complementary series,” IEEE Trans. on Information Theory, pp. 82-87, Apr. 1961.
[26] R. Sivaswamy, “Multiphase complementary codes,” IEEE Trans. on Information Theory, pp. 546-552, Sep. 1978.
[27] H. Ochiai and H. Imai, “Block coding scheme based on complementary sequences for multicarrier signals,” IEICE Trans. on Fundamentals, pp. 2136-2143, Nov. 1997.
[28] S. B. Slimane, “Peak-to-average power ratio reduction of OFDM signals using pulse shaping,” IEEE GLOBECOM ‘00, pp. 1412-1416, Nov.-Dec. 2000.
[29] S. B. Slimane, “Peak-to-average power ratio reduction of OFDM signals using broadband pulse shaping,” Proc. IEEE VTC ‘02, pp. 889-893, Sep. 2002.
[30] J. O. Scanlan, “Pulses satisfying the Nyquist criterion,” Electronics Letters, pp. 50-52, Jan. 1992
[31] N. C. Beaulieu, C. C. Tan and M. O. Damen, “A better than Nyquist pulse,” Communications Letters, pp. 367-368, Sep. 2001
[32] S. Mneina and G. O. Martens, “Analysis of timing sensitivity and Nyquist pulse design,” IEEE CCECE ‘00, pp. 1059-1063, May 2002
[33] I.S. Gradshteyn and I.M. Ryzhik, “Table of integrals, series, and products,” Academic Press, pp.15, 1980
[34] P. Kabal and S. Pasupathy, “Partial-response signaling,” IEEE Transactions on Communications, pp. 921-934, Sep. 1975
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top