跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/30 12:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃志銘
研究生(外文):Jig-Ming Huang
論文名稱:雙包絡減速機幾何分析
論文名稱(外文):Geometric Analysis of Double-Enveloping Reducer
指導教授:蔡得民
指導教授(外文):Der-Min Tsay
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:92
語文別:中文
論文頁數:83
中文關鍵詞:接觸條件雙包絡蝸桿傳動誤差雙包絡減速機
外文關鍵詞:Transmission ErrorGloboidal WormCondition of ContactDouble-Enveloping Reducer
相關次數:
  • 被引用被引用:3
  • 點閱點閱:260
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
雙包絡減速機在工業上常被廣泛使用。本文藉由掃掠法(Sweeping Method)推導雙包絡蝸桿(Globoidal Worm)曲面方程式,再由螺旋理論(Screw Theory)推導雙包絡蝸輪(Globoidal Worm Gear)囓合曲面方程式。參考國際設計規範,求出蝸桿和蝸輪曲面的資料點。作為蝸桿蝸輪幾何分析,包括齒形特徵分析,蝸桿蝸輪的曲率分析,並計算雙包絡蝸桿蝸輪的傳動效率。最後藉由齒面接觸分析法(TCA),使用電腦模擬在有裝配誤差下的傳動誤差。
Double-Enveloping Reducers are used widely in various industries. In this study, a procedure is developed to analyze the geometric and kinematic properties of such a rotational reducer. In the mechanism, the globoidal worm profile is derived by using the sweeping method and the profile of the globoidal worm wheel is obtained by employing the screw theory. Based on Standards of the American Gear Manufacturers Association (AGMA 6030-C87), the involved parameters in designing and analyzing the reducer are revealed. Finally, the transmission errors based on tooth the contact analysis (TCA) are also reported.
摘要 Ⅰ
Abstract Ⅱ
目錄 Ⅲ
圖目錄 Ⅵ
表目錄 Ⅸ
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 7
1-3研究目的與研究方法 9
1-4 論文大綱 9
第二章 雙包絡蝸桿蝸輪規範與參數計算步驟 11
2-1 雙包絡蝸桿蝸輪的特徵 11
2-2 雙包絡蝸桿蝸輪部位名稱 11
2-3 雙包絡蝸桿蝸輪參數計算步驟 15
第三章 座標轉換矩陣與接觸條件 17
3-1座標轉換矩陣 17
3-2 接觸條件 19
3-3空間曲面求法 20
第四章 雙包絡蝸桿蝸輪的曲面 22
4-1 座標設定與座標轉換矩陣 22
4-2蝸桿曲面方程式 26
4-3蝸輪曲面族方程式 28
4-4接觸條件方程式 30
4-4-1蝸桿的法向量 30
4-4-2蝸桿蝸輪的相對速度 32
4-4-3產生接觸條件方程式 33
第五章 幾何分析 35
5-1蝸輪齒形特徵 35
5-2接觸線 37
5-3壓力角、導程角、法向壓力角 40
5-4蝸輪齒厚 42
5-5囓合傳動效率 43
5-6 曲率分析 48

5-6-1蝸桿曲面的曲率分析 49
5-6-2蝸輪曲面的曲率分析 50
第六章 應用實例 52
6-1雙包絡蝸桿與蝸輪曲面應用實例 52
6-2雙包絡蝸桿與蝸輪主曲率應用實例 58
6-2-1雙包絡蝸桿的主曲率 58
6-2-2雙包絡蝸輪的主曲率 61
6-3雙包絡蝸桿蝸輪傳動效率應用實例 66
第七章 傳動誤差分析 68
7-1前言 68
7-2傳動誤差分析 68
7-3求解 和 74
第八章 結論與建議 77
參考文獻 80
[1] Crosher, W. P., 2002, Design and Application of The Worm Gear, ASME press., New York., U.S.A.
[2] 沈頌文,1980,齒輪的設計與製造,徐氏基金會,台北。
[3] CONE DRIVE公司網站 http://www.textronpt.com.
[4] Simon, V., 1993, “Load Distribution in Double Enveloping Worm Gears,” ASME Journal of Mechanical Design, vol. 115, pp. 496-501.
[5] Simon, V., 2003, “Load Distribution in Cylindrical Enveloping Worm Gears,” ASME Journal of Mechanical Design, vol. 125, pp. 356-364.
[6] Tsay, D. M. and Lin, B. J., 1997, “Design and Machining of Globoidal Index Cam,” ASME Journal of Manufacturing Science and Engineering, vol. 119, pp. 21-29.
[7] American National Standard, Design of Industrial Double-Enveloping Worm Gears, ANSI/AGMA 6030-C87.
[8] Tsay, D. M. and Wei, H. M., 1993, “Design and Machining of Cylindrical Cams with Translating Conical Followers,” Computer-Aided Design, vol. 25, No.10, pp. 655-661.
[9] Tsay, D. M. and Hwang, G. S., 1994, “Application of Theory of Envelope to the Determination of Camoid Profiles with Translating Followers,” ASME Journal of Mechanical Design, vol. 116, pp. 320-325.
[10] Fang, H. S. and Tsay, C. B., 1996, “Mathematical Model and Bearing Contacts of the ZK-type Worm Gear Set Cut by Oversize Hob Cutters,” Mechanism and Machine Theory, vol. 31, No.3, pp. 271-282.

[11] Bair, B. W. and Tsay, C. B., 1998, “ZK-type Dual-Lead Worm and Worm-Gear Drives: Contact Teeth, Contact Ratio and Kinematic Erroes,” ASME Journal of Mechanical Design, vol. 120, pp. 422-428.
[12] Fang, H. S. and Tsay, C. B., 1999, “Mathematical Model and Bearing Contacts of the ZN-Type Worm Gear Set Cut by Oversize Hob Cutters,” Tenth World of Congress on the Theory of machines and Mechanisms, Oulu, Proceeding, pp. 2270-2275.
[13] Chakraborty, J. and Dhande, S. G., 1977, Kinematics and Geometry of Planar and Spatial Cam Mecnanisms, John Wiley & Sons Inc., New York., U.S.A.
[14] Yan, H. S. and Chen, H. H., 1994, “Geometry Design and Machining of Roller Gear Cams with Cylindrical Rollers,” Mechanism and Machine Theory, vol. 29, No. 6, pp. 803-812.
[15] Yan, H. S. and Chen, H. H., 1996, “Geometry Design of Globoidal Cams With Generalized Meshing Turret-Rollers,” ASME Journal of Mechanical Design, vol. 118, pp. 243-249.
[16] Ishida, K., Ueda, H., Ohashi, S., and Fukui, Y., 1978, “Theoretical and Experimental Investigation of a New Plane Toothed Wheel and Its Enveloping Hourglass Worm,” ASME Journal of Mechanical Design, vol. 100, pp. 460-469.
[17] Simon, V., 1998, “Characteristics of a New Type of Cylindrical Worm-Gear Drive,” ASME Journal of Mechanical Design, vol. 120, pp. 139-146.
[18] Simon, V., 1989, “A New Type of Ground Double Enveloping Worm Gear Drive,” ASME International Power Transmission and Gearing Conference, Chicago, pp. 282-288.

[19]Litvin, F. L. and Chen, V. K., 1992, “Computerized Simulation of Meshing and Bearing Contact for Single-Enveloping Worm-Gear Drives,” ASME Journal of Mechanical Design, vol. 114, pp. 313-316.
[20] Seol, I. H., 2000, “The Design, Generation, and Simulation of Meshing of Worm-Gear Drive with Longitudinally Localized Contacts,” ASME Journal of Mechanical Design, vol. 122, pp. 201-205.
[21] Greening, J. H., Barlow, R. J., and Loveless, W. G., 1980, “Load Sharing on the Teeth of Double Enveloping Worm Gear,”Ⅱ International Power Transmissions and Gearing Conference, San Francisco, Paper No. 80-02/DET-43.
[22] Simon, V., 1993, “Stress Analysis in Double Enveloping Worm Gears by Finite Element Method,” ASME Journal of Mechanical Design, vol. 115, pp. 179-185.
[23] Tsay, D. M. and Ho, H. C., 2001, “Consideration of Manufacturing Parameters in the Design of Grooved Globoidal Cam Indexing Mechanisms,” Proc Instn Mech Engrs vol. 215, pp. 95-103.
[24] Tsay, D. M., Ho, H. C., and Wang, K. C., 2002, “Design of Torque Balancing Cams for Globoidal Cam Indexing Mechanisms,” ASME Journal of Mechanical Design, vol. 124, pp. 441-447.
[25] Tsay, D. M., Huang, M. H., and Ho, H. C., 2002, “Producing Follower Motions Through Their Digitized Cam Contours,” Journal of Computing and Information Science in Engineering, vol. 2, pp.98-105.
[26] Darle W. Dudley, 1984, Handbook of Practical Gear Design, New York, John Wiley & Sons.

[27] Litvin, F. L., 1994, Gear Geometry and Applied Theory, PTR Prentice Hall , Englewood Cliffs, New Jersey, U. S. A.
[28] Juvinall, R. C. and Marshek, K. M., 1991, Fundamentals of Machine Component Design, John Wiley & Sons, U. S. A.
[29] Rogers, D. F. and Adams, J. A., 1990, Mathematical Elements Computer Graphics, McGraw-Hill, New York.
[30] Stocker, J. J., 1969, Differential Geometry, John Wiley & Sons, New York.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top