跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/27 09:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳朝榮
研究生(外文):Chao-Jung Chen
論文名稱:靜電式微致動器之非線性靜動態特性研究
論文名稱(外文):Nonlinear Static and Dynamic Characteristics of Electrostatic Micro-actuators
指導教授:光灼華
指導教授(外文):Jao-Hwa Kuang
學位類別:博士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:163
中文關鍵詞:微機電微致動器殘振吸致靜電式
外文關鍵詞:electrostaticresidual vibrationpull-inmicro-actuatorMEMS
相關次數:
  • 被引用被引用:1
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在模擬與研討微機電系統中靜電式曲形微致動器之非線性靜、動態特性。
在研究非線性吸致變形的分析模型中,除了不同邊界條件的靜電式致動結構,例如懸臂樑、兩端固定樑,而且將電場的邊緣效應以及殘留應力也一併考慮。為求解非線性方程式的封閉解,本文首先利用Adomian分解法評估矩形樑與平坦電極所組成的微致動器,因為在求解非線性變形的過程中不需要迭代,分解法是評估靜電式微致動器不穩定吸致行為的最有效方法之一。
本研究中,為探討在微致動器模擬過程中對於準確性的影響,小變形與大變形的假設同時被執行,同時,本文進一步利用微分值積法來評估及檢驗不同形狀的微型樑與曲形電極所組成的微致動器對於非線性吸致行為的影響。再其次,本論文亦研究曲形微夾式致動器的接觸力與吸致變形,並且採用微分值積法來求解曲形靜電場力與不同形狀之懸臂式致動器變形間的非線性交互作用,數值分析的結果顯示微分值積法可以精確、有效及系統化的處理此種非線性致動器問題。
為評估靜電式微致動器的動態特性,利用微分值積法計算一種兩端固定的形狀樑在其受到靜電力作用下於靜態變形處振動的自然頻率,所分析的模型包含曲形靜電場力與形狀微型樑恢復力之間的非線性交互作用,以及中性面的拉伸效應、軸向殘留應力與電場的邊緣效應,分析結果顯示本分析模型的模擬結果與實測值非常吻合,本文同時亦研究形狀微型樑與曲形電極對於致動器系統自然頻率的影響,解析的結果顯示各種微型樑或電極形狀不僅會影響靜電場的分怖,而且嚴重改變微致動器的動態特性,解析的結果進一步證明形狀微型樑與曲形電極微致動器可以將工作電壓範圍增加為矩形樑與平坦電極微致動器的六倍。
今日,愈來愈多的微機電機構整合了電路設計,例如微開關、光學微鏡片…等,這些微致動器在電壓作用下要到達永久靜止的位置之前會有殘振的產生,因此,本研究進一步探討懸臂樑式微開關且考慮微型樑與基底間之空氣壓縮薄膜阻尼時的殘振現象。
在分析模擬不同形狀的微致動器之後,對於其非線性之靜、動態特性可以得到適切的瞭解,並進一步提供設計者在設計階段得以適當且精確的控制微機構之操作範圍。
This dissertation performs a simulation investigation into the nonlinear static and dynamic characteristics of electrostatically driven shaped micro-actuators in micro-electro-mechanical systems (MEMS).
The model proposed in the current nonlinear pull-in deflection study considers various boundary conditions for the electrostatically actuated structures, e.g. the cantilever beam and the fixed-fixed beam, and takes account of the electrical field fringing effect and the axial residual stress. Initially, the Adomian decomposition method is employed to evaluate the response of a micro-actuator incorporating a rectangular micro-beam and a flat electrode by obtaining the closed-form solution of the corresponding nonlinear equation. Since no iteration is required in solving the nonlinear deformation, this decomposition method is one of the most efficient methods available for evaluating the unstable pull-in behavior of an electrostatically driven micro-actuator.
The present study implements both small and large deflection assumptions when simulating the response of the micro-actuator in order to explore the possible effects of the two models on the accuracy of the simulation results. The shaped micro-beam with a curved electrode micro-actuator is further assessed using the differential quadrature method (DQM) to examine the influence of the nonlinear pull-in effect. This dissertation also studies the contact force and the pull-in deflection of shaped micro-tweezers. The DQM is employed to solve the nonlinear interaction between the curved electrostatic field force and the corresponding deflection of the shaped cantilever actuators. The numerical results confirm the ability of the DQM to treat this form of nonlinear actuator problem accurately, efficiently and systematically.
To evaluate the dynamic characteristics of the electrostatic micro-actuator, the DQM is applied to solve the natural frequencies of a fixed-fixed shaped beam vibrating around its statically deflected position under electrostatic loading. The proposed model not only takes account of the nonlinear interaction between the curved electrostatic field force and the restoring force of the shaped micro-beam, but also considers mid-plane stretching, axial residual stress, and electrical field fringing effects. It is shown that an excellent agreement exists between the simulation results obtained using the proposed model and those measured experimentally. This study also investigates the micro-beam and electrode shape effect on the natural frequencies of the actuator system. The analytical results indicate that variations in the shape of the micro-beam or of the electrode not only influence the electrostatic field distribution, but also significantly alter the dynamic characteristics of the micro-actuator. Furthermore, the results demonstrate that the shaped micro-beam with a curved electrode micro-actuator increases the working voltage range of the micro-actuator by a factor of approximately six times compared to that of a micro-actuator incorporating a rectangular micro-beam and a flat electrode.
A continuing trend nowadays is the integration of micro-electro-mechanical devices with electronic circuitry to fabricate MEMS devices such as micro-switches, optical micro-mirrors, etc. It is known that when an electrical voltage is applied to these devices, the micro-actuators will undergo a residual vibration before reaching their permanent position. Hence, this dissertation investigates the residual vibration phenomenon of cantilever beam type micro-switches with air squeeze-film damping between the micro-beam and substrate.
The present simulations of various shaped micro-actuators provide an understanding of the nonlinear static and dynamic behaviors of these devices and as such provide designers with the information required to properly and accurately control the device operating range during the design stage.
CONTENTS

Acknowledgements……………………………………………………………………………… i
ABSTRACT ……………………………………………………………………………………. ii
List of Tables …………………………………………………………………………………… x
List of Figures …………………………………………………………………………………..xi
Nomenclature ………………………………………………………………………………….. xiv
Chapter 1 Introduction…………………………………………………………………………1
1.1 Electrostatic Micro-Electro-Mechanical Systems (MEMS)…………………………….2
1.1.1 Micro-switches, Micro-tweezers and 3-D MEMS Simulator…..…………………...2
1.1.2 Micro-sensors and Micro-actuators…………………..……………………………4
1.1.3 Dynamic Characteristics and Damping……………..…………………………….9
1.2 Numerical Methods…………………………………………………..…………………..12
1.3 Outline of Dissertation………………………………………………………………….14
Chapter 2 Nonlinear Pull-in Effect of Electrostatic Micro-actuators………………………18
2.1 Different Actuator Devices……………………………………………………………..18
2.1.1 Fixed-fixed Beam Micro-actuator……..…………….……………………………18
2.1.2 Cantilever Beam Micro-actuator……………………………..…………………..20
2.2 Adomian Decomposition Method………………………………………………………20
2.3 Analysis of Different Micro-actuators………..………………………………………….22
2.3.1 Simulation Models of Fixed-fixed Beam Micro-actuators…...………………….25
2.3.1.1 1-D Continuous Beam Model…………………………………………….25
2.3.1.2 Lumped Model……………………………………………………………...27
2.3.2 Simulation Model of Cantilever Beam Micro-actuator…....………………………30
2.4 Conclusions……………………..………………………………………………………..32
Chapter 3 The Nonlinear Electrostatic Behavior for Shaped Electrode Micro-actuators.41
3.1 Shaped Electrode Micro-actuators…………………………………………………….41
3.2 Analysis Model of Nonlinear Pull-in Deflection………….……………………………42
3.2.1 Small Deflection Model of a Cantilever Beam Micro-actuator……..……………43
3.2.2 Large Deflection Model of a Cantilever Beam Micro-actuator…..………………..43
3.2.3 Small Deflection Model of a Fixed-fixed Beam Micro-actuator…..………………44
3.3 Differential Quadrature Method (DQM)……………………………………………….45
3.3.1 DQM Model for Small Deflection Theory of a Cantilever Beam Micro-actuator...48
3.3.2 DQM Model for Large Deflection Theory of a Cantilever Beam Micro-actuator...50
3.3.3 DQM Model for a Fixed-fixed Beam Micro-actuator……………………………..52
3.4 Analysis Results…………………………………………….……………………………53
3.4.1 Cantilever Rectangular Beam Micro-actuators with Different Curved Electrodes..53
3.4.2 Difference Introduced by Using the Large or Small Deflection Models……..……55
3.4.3 Fixed-fixed Rectangular Beam Micro-actuators with Different Residual Stresses..55
3.4.4 Different Combinations of Shaped Beam and Curved Electrode………………….56
3.5 Conclusions…………………………………………………………………………….57
Chapter 4 Electrostatic Micro-tweezers………………………………………………………68
4.1 Models of Micro-tweezers……………………………………………………………68
4.1.1 Analysis Model…………………………………………………………………….68
4.1.2 DQM Model………………………..………………………………………………69
4.2 Numerical Analyses of Different Micro-tweezers……………………………………71
4.2.1 Cantilever Rectangular Beam Type Micro-tweezers……………..…………..71
4.2.1.1 Simplified Micro-tweezers ……………………………………………72
4.2.1.2 Micro-tweezers without Silicon Dioxide Coating……………………...73
4.2.1.3 Micro-tweezers with Silicon Dioxide Coating…………………………...74
4.2.2 Shaped Cantilever Beam Micro-tweezers……………………………………….75
4.3 Conclusions………………………………………………………………………………75
Chapter 5 Dynamic Characteristics of Shaped Micro-actuators……………………………85
5.1 Analysis Model for a Fixed-fixed Beam Type Micro-actuator………………..…………85
5.2 DQM Models…………………………………………………………………………….89
5.2.1 Static Deflection Model of a Fixed-fixed Beam Micro-actuator………………….90
5.2.2 Mode Shapes and Natural Frequencies of the Fixed-fixed Beam
Micro-actuator……………………………………………………………………92
5.3 Numerical Results for Shaped Micro-actuators.……………………………………….93
5.3.1 Fixed-fixed Rectangular Micro-beams with Flat Electrodes..……………………93
5.3.2 Fixed-fixed Rectangular Micro-beam Actuators with Different Curved
Electrodes...…………………………………………….....………………………95
5.3.3 Shaped Micro-beam Actuators with a Flat Electrode………..…………………….96
5.3.4 Shaped Micro-beams with Curved Electrodes………………..……………………97
5.4 Conclusions……………………………………………………………………………....98
Chapter 6 Residual Vibrations of Micro-actuators………………………………………..110
6.1 Model Description……………………………………………………………………..111
6.1.1 Governing Equation of a Cantilever Micro-beam Type Actuator………………...111
6.1.2 Squeeze-film Damping………...………………..………………………………..112
6.2 Analysis Method………………………………………………………………………114
6.3 Numerical Examples…………………………………………………………………116
6.3.1 Natural Frequencies of the System……………………………………………….116
6.3.2 Residual Vibration of a Uniform Rectangular Micro-beam with a Full
Electrode Design…………………………………………………………………117
6.3.3 Residual Vibration of a Uniform Rectangular Micro-beam with a Partial
Electrode Design…………………………………………………………………118
6.3.4 Residual Vibration of a Shaped Micro-beam with a Partial Electrode Design…...119
6.3.4.1 A Shaped Beam with a Shape Parameter of m=0.5………………………...119
6.3.4.2 A Shaped Beam with a Shape Parameter of m=1.0………………………120
6.3.4.3 A Shaped Beam with a Shape Parameter of m=2.0.………………………120
6.4 Conclusions……………………………………………………………………..………121
Chapter 7 Conclusions and Future Research…………………………………………..……..129
7.1 Conclusions……………………………………………………………………………..129
7.2 Future Research…………………………………………………………………..…….130
References……………………………………………………………………………………131
Appendix ……………………………………………………………………………………143
[1] Senturia, S. D., Aluru, N. and White, J., 1997, “Simulating the behavior of MEMS devices: computational methods and needs”, IEEE Computational Science & Engineering, vol. 4, No. 1, pp. 30-43.
[2] Madou, M., 1997, “Fundamentals of Microfabrication”, CRC Press.
[3] Pister, K. S. J., 2001, “Introduction to MEMS design and Fabrication”, Berkeley Sensor and Actuator Center, UC Berkeley.
[4] Petersen, K. E., 1978, “Dynamic micromechanics on silicon: techniques and devices”, IEEE Trans. Electron Devices, vol. ED-25, No.10, pp. 1241-1250.
[5] Petersen, K. E., 1982, “Silicon as a Mechanical Material”, Proceedings of the IEEE, vol. 70, No.5, pp. 420-457.
[6] Yasuda, T., Shimoyama, I and Miura, H., 1995, “Electrostatically driven micro elastic joints”, Int. Conf. on Intelligent Robots and Systems’95, Human Robot Interaction and Cooperative Robots, IEEE, vol.2, pp. 242-245.
[7] Elwenspoek, M., Weustink, M. and Legtenberg, R., 1995, “Static and dynamic
properties of active joints”, Int. Conf. on Solid-Sate Sensors and Actuators, vol. 2, pp. 412-415.
[8] Attia, P. and Tremblay, G., 1998, “Characterisation of a low-voltage actuated gold microswitch”, Material Science and Engineering, vol. B51, pp. 263-266.
[9] Chen, L. Y., Zhang, Z. L., Yao, J. J., Thomas, D. C. and MacDonald, N. C., 1989, “Selective Chemical vapor deposition of tungsten for microdynamic structures”, Proceeding of An Investigation of Micro Structures, Sensors, Actuators, machines and Robots, IEEE, pp. 82-87.
[10] MacDonald, N. C., Chen, L. Y., Yao, J. J., Zhang, Z. L., Mcmillan, J. A. and Thomas, D. C., 1989, “Selective Chemical vapor deposition of tungsten for micromechanical structures”, Sensors and Actuators, vol. 20, pp. 123-133.
[11] Shi, F., Ramesh, P. and Mukherjee, S., 1995, “Simulation methods for micro-electro-mechanical structures (MEMS) with application to a micro-tweezers”, Computer & Structures, vol. 56, No.5, pp. 769-783.
[12] Volland, B. E., Heerlein, H. and Rangelow, I. W., 2002, “Electrostatically driven microgripper”, Microelectronic Engineering, vol. 61-62, pp. 1015-1023.
[13] Seidemann, V., Butefisch, S. and Buttgenbach, S., 2002, “Fabrication and investigation of in-plane compliant SU8 structures for MEMS and their application to micro valves and micro grippers”, Sensors and Actuators, vol. A97-98, pp. 457-461.
[14] Koppelman, G. M., 1989, “OYSTER, a three-dimensional structural simulator for microelectromechanical design”, Sensors and Actuators, vol. 20, pp. 179-185.
[15] Nabors, K. and White, J., 1991, “FastCap: A multipole accelerated 3-D capacitance extraction program”, IEEE Trans. On Computer-aided Design of Integrated Circuits and Systems, vol. 10, No. 11, pp. 1447-1459.
[16] Artz, B. E. and Cathey, L. W., 1992, “A finite element method for determining
structural displacements resulting from electrostatic forces”, International Conf. Solid-State Sensors and Actuators Workshop, pp. 190-193.
[17] Senturia, S. D., Harris, R. M., Johnson, B. P., Kim, S., Nabors, K., Shulman, M. A. and White, J. K., 1992, “A computer-aided design system for microelectromechanical systems (MEMCAD)”, J. Microelectromechanical Systems, vol. 1, No.1, pp. 3-13.
[18] Gilbert, J. R., Osterberg , P. M., Harris, R. M., Ouma, D. O., Cai, X., Pfajfer, A., White, J. K. and Senturia, S. D., 1993, “Implementation of a MEMCAD system for electrostatic and mechanical analysis of complex structures from mask descriptions”, Proceeding of An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems, MEMS’93, IEEE, pp. 207-212.
[19] Cai, X., Yie, H., Osterberg, P. M., Gilbert, J., Senturia, S. D. and White, J. K., 1993, “A relaxation/multipole-accerelated scheme for self-consistent electromechanical analysis of complex 3-D microelectromechanical structures”, Int. conf. on Computer-Aided Design, IEEE, pp. 283-286.
[20] Senturia, S. D., 1998, “CAD challenges for microsensors, microactuators, and microsystems”, Proceeding of the IEEE, vol. 86, No. 8, pp. 1611-1626.
[21] Senturia, S. D., 1998, “Simulation and design of microsystems: a 10-year perspective”, Sensors and Actuators, vol. A67, pp. 1-7.
[22] Li, G. and Aluru, N. R., 2001, “Linear, nonlinear and mixed-regime analysis of electrostatic MEMS”, Sensors and Actuators, vol. A91, pp. 278-291.
[23] Collenz, A., De Bona, F., Gugliotta, A. and Soma, A., 2004, “Large deflections of microbeams under electrostatic loads”, J. Micromech. Microeng., vol. 14, pp. 365-373.
[24] Chen, K. S., Ou, K. S. and Li, L. M., 2004, “Development and accuracy assessment of simplified electromechanical coupling solvers for MEMS applications”, J. Micromech. Microeng., vol. 14, pp. 159-169.
[25] Tang, W. C., Nguyen, T. H. and Howe, R. T., 1989, “Laterally Driven Polysilicon Resonant Microstructures”, Proceeding of An Investigation of Micro Structures, Sensors, Actuators, machines and Robots, IEEE, pp. 53-59.
[26] Tong, L., Hsu, J. T., Ko, W. H. and Ding, X., 1991, “The analysis of capacitive pressure sensors with large-deflection”, International Conf. Solid-State Sensors and Actuators Workshop, pp. 308-311.
[27] Petersen, K. E., Pourahmadi, F. and Brown, J., 1991, “Resonant beam pressure sensor fabricated with silicon fushion bonding”, International Conf. Solid-State Sensors and Actuators Workshop, pp. 664-667.
[28] Kiesewetter, L., Zhang, J. M., Houdeau, D. and Steckenborn, A., 1992, “Determination of Young’s moduli of micromechanical thin films using the resonance method”, Sensors and Actuators, vol. A35, pp. 153-159.
[29] Zook, J. D., Burns, D. W., Guckel, H., Sniegowski , Engelstad, J. J., R. L. and Feng, Z., 1992, “Characteristics of polysilicon resonant microbeams”, Sensors and Actuators, vol. A35, pp. 51-59.
[30] Ijntema, D. J. and Tilmans , H. A. C., 1992, “Static and dynamic aspects of an air-gap capacitor”, Sensors and Actuators, vol. A35, pp. 121-128.
[31] Tilmans, H. A. C. and Legtenberg, R., 1994, “Electrostatically driven vacuum-encapsulated polysilicon resonators, Part II theory and performance”, Sensors and Actuators, vol. A45, pp. 67-84.
[32] Tilmans, H. A. C., Legtenberg, R., Schurer, H., Ijntema, D. J., Elwenspoek, M. and Fluitman, J. H. J., 1994, “ (Electro-) Mechanical characteristics of electrostatically driven vacuum encapsulated polysilicon resonators”, IEEE Trans. on Ultrasonics, Ferroelecrics and Frequency Control, vol. 41, No.1, pp. 4-6.
[33] Legtenberg, R. and Tilmans, H. A. C., 1994, “Electrostatically driven vacuum-encapsulated polysilicon resonators, Part I design and fabrication”, Sensors and Actuators, vol. A45, pp. 57-66.
[34] Minami, K., Kawamura, S. and Esashi, M., 1993, “Fabrication of distributed
electrostatic microactuator (DEMA)”, J. Microelectromechanical Systems, vol. 2, No.3, pp.121-127.
[35] Osterberg, P. M., Yie, H., Cai, X., White, J. and Senturia, S. D., 1994, “Self-consistent simulation and modeling of electrostatically deformed diaphragms”, Proceeding of Micro Electro Mechanical System, MEMS’94, IEEE, pp. 28-32.
[36] Tanaka, K., Mochida, Y., Sugimoto, M., Moriya, K., Hasegawa, T., Atsuchi, K. and Ohwada, K., 1995, “A micromachined vibrating gyroscope”, Sensors and Actuators, vol. A50, pp. 111-115.
[37] Kadar, Z., Bossche, A. and Mollinger, J., 1995, “Design of a single-crystal
silicon-based micromechanical resonator using finite element simulation”, Sensors and Actuators, vol. A46-47, pp. 623-627.
[38] Bienstman, J., Tilmans, H. A. C., Steyaert, M. and Puers, R., 1995, “An oscillator circuit for electrostatically driven silicon-based one-port resonators”, Int. Conf. on Solid-Sate Sensors and Actuators, vol. 1, pp. 146-149.
[39] Legtenberg, R., Berenschot, E., Elwenspoek, M. and Fluitman, J., 1995, “Electrostatic curved electrode actuators”, Proceeding of Micro Electro Mechanical System, MEMS’95, pp. 37-42.
[40] Legtenberg, R., Gilbert, J., Senturia, S. D. and Elwenspoek, M., 1997, “Electrostatic curved electrode actuators”, J. Microelectromechanical Systems, vol. 6, No.3, pp. 257-265.
[41] Osterberg, P. M. and Senturia, S. D., 1997, “M-test: A test chip for MEMS material property measurement using electrostatically actuated test structures”, J. Microelectromechanical Systems, vol. 6, No.2, pp. 107-118.
[42] Hirai, Y., Marushima, Y., Soda, S., Jin, D., Kawata, H., Inoue, K. and Tanaka, Y., 2000, “Electrostatic actuator with novel shaped cantilever”, Proceeding of Micro Mechanic and Human Science, IEEE, pp. 223-227.
[43] Hirai, Y., Shindo, M. and Tanaka, Y., 1998, “Study of large bending and low voltage drive electrostatic actuator with novel shaped cantilever and electrode”, Proceeding of Micro Machines and Human Science, pp. 161-164.
[44] Puers, R. and Lapadatu, D., 1996, “Electrostatic forces and their effects on capacitive mechanical sensors”, Sensors and Actuators, vol. A56, pp. 203-210.
[45] Gilbert, J. R., Ananthasuresh, G. K. and Senturia, S. D., 1996, “3D modeling of contact problems and hysteresis in coupled electro-mechanics”, Proceeding of An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems, IEEE, pp. 127-132.
[46] Lee, K. B. and Chao, Y. H., 1996, “An electrostatic quality factor control for
surface-micromachined lateral resonators”, Proceeding of Micro Mechanic and Human Science, IEEE, pp. 143-147.
[47] Seeger, J. I. and Grary, S. B., 1997, “Stabilization of electrostatically actuated
mechanical devices”, Int. Conf. on Solid-Sate Sensors and Actuators, vol. 2, pp. 1133-1136.
[48] Yasuda, T., Shimoyama, I. and Miura, H., 1997, “CMOS drivable electrostatic
microactuator with large deflection”, Proceeding of Micro Electro Mechanical Systems, MEMS’97, IEEE, pp. 90-95.
[49] Gill, J. Y., Ngo, L. V., Nelson, P. R. and Kim, C. J., 1998, “Elimination of extra spring effect at the step-up anchor of surface-micromachined structure”, J. Microelectromechanical Systems, vol. 7, No.1, pp.114-121.

[50] Lee, K. B. and Chao, Y. H., 1998, “A triangular electrostatic comb array for
micromechanical resonant frequency tuning”, Sensors and Actuators, vol. A70, pp. 112-117.
[51] Usuda, T., 1998, “Operational characteristics of electrostatically driven torsional
resonator with two degrees of freedom”, Sensors and Actuators, vol. A64, pp. 255-257.
[52] Fischer, M., Giousouf, M., Schaepperle, J., Eichner, D. and Weinmann, M., 1998, “Electrostatically deflectable polysilicon micromirrors-dynamic behaviour and comparison with the results from FEM modeling with ANSYS”, Sensors and Actuators, vol. A67, pp. 89-95.
[53] Simon, J., Saffer, S., Sherman, F. and Kim, C. J., 1998, “Lateral polysilicon microrelays with a mercury microdrop contact”, IEEE Trans. on Industrial Electronics, vol. 45, No. 6, pp. 854-860.
[54] Horsley, D. A., Horowitz, R. and Pisano, A. P., 1998, “Microfabricated electrostatic actuators for hard disk drives”, IEEE/ASME Trans. on Mechatronics, vol. 3, No. 3, pp. 175-183.
[55] Mukherjee, T., Iyer, S. and Fedder, G. K., 1998, “Optimization-based synthesis of microresonators”, Sensors and Actuators, vol. A70, pp. 118-127.
[56] Pan, C. S. and Hsu, W., 1999, “A microstructure for in situ determination of residual strain”, J. Microelectromechanical Systems, vol. 8, No.2, pp. 200-207.
[57] Chan, E. K., Garikipati, K. and Dutton, R. W., 1999, “Characterization of contact electromechanics through capacitance-voltage measurement and simulations”, J. Microelectromechanical Systems, vol. 8, No.2, pp. 208-217.
[58] Hung, E. S. and Senturia, S. D., 1999, “Extending the travel range of analog-tuned electrostatic actuators”, J. Microelectromechanical Systems, vol. 8, No.4, pp. 497-505.
[59] Hsieh, J. and Fang, W., 2000, “A novel microelectrostatic torsional actuator”, Sensors and Actuators, vol. A79, pp. 64-70.
[60] Yasumura , K. Y., Stowe, T. D., Chow, E. M., Pfafman, T., Kenny, T. W., Stipe, B. C. and Rugar, Daniel, 2000, “Quality factors in micron- and submicron- thick cantilevers”, J. Microelectromechanical Systems, vol. 9, No.1, pp. 117-125.
[61] Veijola, T., Mattila, T., Jaakkola, O., Kiihamaki J., Lamminmaki, T., Oja, A.,
Ruokonen, K., Seppa, H. , Seppala, P. and Tittonen, I., 2000, “Large-displacement modeling and simulation of micromechanical electrostatically driven resonators using the harmonic balance method”, Symp. Digest of Microwave, IEEE, pp. 99-102.
[62] Stanczyk, T., Ilic, B. and Hesketh, P. J., 2000, “A microfabricated electrochemical actuator for large displacements”, J. Microelectromechanical Systems, vol. 9, No.3, pp. 314-320.
[63] Madanagopal, K. V. and Tien, N. C., 2000, “System design for micropositioning and sensing of micro-electromechanical (MEM) actuators”, Conf. on Instrumenttaion and Measurement Technology, IEEE, pp. 1204-1207.
[64] Gupta, R. K., 2000, “Electronically probed measurements of MEMS geometries”, J. Microelectromechanical Systems, vol. 9, No.3, pp. 380-389.
[65] Yael N. and Ofir B. D., 2001, “A methodology and model for the pull-in parameters of electrostatic actuators”, J. Microelectromechanical Systems, vol. 10, No.4, pp. 601-615.
[66] Lee, K. B. and Chao, Y. H., 2001, “ Laterally driven electrostatic repulsive-force microactuators using asymmetric field distribution”, J. Microelectromechanical Systems, vol. 10, No.1, pp. 128-136.
[67] Emmannel Q., Lionel B. and Dominique C., 2001, “3-D self-assembling and actuation of electrostatic microstructures”, IEEE Trans. on Electron Devices, vol. 48, No. 8, pp. 1833-1839.
[68] Abdel-Rahman, E. M., Younis, M. I. and Nayfeh, A. H., 2002, “Characterization of the mechanical behavior of an electrically actuated microbeam”, J. Micromech. Microeng., vol. 12, pp. 759-766.
[69] Pamidighantam, S., Puers, R., Baert, K. and Tilmans, H. A. C. , 2002, “Pull-in voltage analysis of electrostatically actuated beam structures with fixed-fixed and fixed-free end conditions”, J. Micromech. Microeng., vol. 12, pp. 458-464.
[70] Rocha, L. A., Cretu, E. and Wolffenbuttel, R. F., 2002, “The pull-in of symmetrically and asymmetrically driven microstructures and the use in DC voltage references”, Conf. on Instrumenttaion and Measurement Technology, IEEE, pp. 759-764.
[71] Li, G. and Aluru, N. R., 2002, “A Lagrangian approach for electrostatic analysis of deformable conductors”, J. Microelectromechanical Systems, vol. 11, No.3, pp. 245-254.
[72] Degani, O. and Yael, N., 2002, “Design considerations of rectangular electrostatic torsion actuators based on new analytical pull-in expressions”, J. Microelectromechanical Systems, vol. 11, No.1, pp. 20-26.
[73] Knapp, J. A. and Boer, M. P., 2002, “Mechanics of microcantilever beams subject to combined electrostatic and adhesive forces”, J. Microelectromechanical Systems, vol. 11, No.6, pp. 754-764.
[74] O’Mahony, C., Hill, M., Duane, R. and Mathewson, A., 2003, “Analysis of electromechanical boundary effects on the pull-in of micromachined fixed-fixed beams”, J. Micromech. Microeng., vol. 13, pp. S75-S80.
[75] Andrews, M., Harris, I. and Turner, G., 1993, “A comparison of squeeze-film theory with measurements on a microstructure”, Sensors and Actuators, vol. A36, pp. 79-87.
[76] Zhang, X. and Tang, W. C., 1994, “Viscous air damping in laterally driven microresonators”, Proceeding of Micro Electro Mechanical Systems, MEMS’94, IEEE, pp. 199-204.
[77] Chao, Y. H., Pisano, A. P. and Howe, R. T., 1994, “Viscous damping model for laterally oscillating microstructures”, J. Microelectromechanical Systems, vol. 3, No.2, pp. 81-87.
[78] Hosaka, H., Itao, K. and Kuroda, S., 1995, “Damping characteristics of beam-shaped micro-oscillators”, Sensors and Actuators, vol. A49, pp. 87-95.
[79] Xu, Y. and Smith, S. T., 1995, “Determination of squeeze film damping in capacitance-based cantilever force probe”, Precision Engineering, pp. 94-100.
[80] Chu, P. B., Nelson, P. R., Tachiki, M. L. and Pister, K. S. J., 1996, “Dynamics of polysilicon parallel-plate electrostatic actuators”, Sensors and Actuators, vol. A52, pp. 216-220.
[81] Bourgeois, C. and Hoogerwerf, A., 1997, “Analytical modeling of squeeze-film
damping in accelerometers”, Int. Conf. on Solid-Sate Sensors and Actuators, vol. 2, pp. 1117-1120.
[82] Yang, Y. J. , Gretillat, M. A. and Senturia, S. D., 1997, “Effect of air damping on the dynamics of nonuniform deformations of microstructures”, Int. Conf. on Solid-Sate Sensors and Actuators, vol. 2, pp. 1093-1096.
[83] Darling, R. B., Hivick, C. and Xu, J., 1997, “Compact analytical models for squeeze film damping with arbitrary venting conditions”, Int. Conf. on Solid-Sate Sensors and Actuators, vol. 2, pp. 1113-1116.
[84] Rabinovich, V. L., Gupta, R. K. and Senturia, S. D., 1997, “The effect of release-etch holes on the electromechanical behavior of MEMS structures”, Int. Conf. on Solid-Sate Sensors and Actuators, vol. 2, pp. 1125-1128.
[85] Mechner, J., Kurth, S., Billep, D., Kaufmann, C., Kehr, K. and Dotzel, W., 1998, “Simulation of gas damping in microstructures with nontrivial geometries”, Proceeding of Micro Electro Mechanical System, MEMS’98, IEEE, pp. 172-177.
[86] Francais, O. and Dufour, I., 1998, “Dynamic simulation of an electrostatic micropump
with pull-in and hysteresis phenomena”, Sensors and Actuators, vol. A70, pp. 56-60.
[87] Kim, E. S., Chao, Y. H. and Kim, M. U., 1999, “Effct of holes and edges on the squeeze film damping of perforated micromechanical structures”, Proceeding of Micro Electro Mechanical Systems, MEMS’99, IEEE, pp. 296-301.
[88] Hietanen, J., Bomer, J., Jonsmann, J., Olthuis, W., Bergveld, P. and Kaski, K., 2000, “Damping of a vibrating beam”, Sensors and Actuators, vol. A86, pp. 39-44.
[89] Bao, M. , Yang, H., Sun, Y. and French, P. J., 2003, “Modified Reynold’s equation and analytical analysis of squeeze-film air damping of perforated structures”, J. Micromech. Microeng., vol. 13, pp. 795-800.
[90] Nayfeh, A. H. and Younis, M. I., 2004, “A new approach to the modeling and simulation of flexible microstructures under the effect of squeeze-film damping”, J. Micromech. Microeng., vol. 14, pp. 170-181.
[91] Gretillat, M. A., Yang, Y. J., Hung, E. S., Rabinovich, V., Ananthasuresh, G. K., Rooij, N. F. de and Senturia, S. D., 1997, “Nonlinear electromechanical behavior of an electrostatic microrelay”, Int. Conf. on Solid-Sate Sensors and Actuators, vol. 2, pp. 1141-1144.
[92] Gupta, K. and Senturia, S. D., 1997, “Pull-in time dynamics as a measure of absolute pressure”, Proceeding of Micro Electro Mechanical Systems, MEMS’97, IEEE, pp. 290-294.
[93] Hung, E. S. and Senturia, S. D., 1999, “Generating efficient dynamical models for microelectromechanical systems from a few finite-element simulation runs”, J. Microelectromechanical Systems, vol. 8, No.3, pp. 280-289.
[94] Hung, E. S., Yang, Y. J. and Senturia, S. D., 1997, “Low-order models for fast dynamical simulation of MEMS microstructures”, Int. Conf. on Solid-Sate Sensors and Actuators, vol. 2, pp. 1101-1104.
[95] Castaner, L. M., and Senturia, S. D., 1999, “Speed-energy optimization of electrostatic actuators based on pull-in”, J. Microelectromechanical Systems, vol. 8, NO.3, pp. 290-298.
[96] Castaner, L. M., Rodriguez, A., Pons, J. and Senturia, S. D., 2000, “Pull-in time-energy product of electrostatic actuators: comparison of experiments with simulation”, Sensors and Actuators, vol. A83, pp. 263-269.
[97] Minami, K., Matsunaga, T. and Esashi, M., 1999, “ Simple modeling and simulation of
the squeeze film effect and transient response of the MEMS device”, Proceeding of Micro Electro Mechanical System, MEMS’99, IEEE, pp. 338-343.
[98] Chen, J. and Kang, S. M., 2000, “An algorithm for automatic model-order reduction of nonlinear MEMS devices”, Int. Symp. on Circuits and Systems, IEEE, pp. 445-448.
[99] Chen, J. and Kang, S. M., 2000, “Model-order reduction of weakly nonlinear MEMS devices with Taylor series expansion and Arnoldi process”, 43rd IEEE Proceeding Midwest Symp. on Circuits and Systems, pp. 248-251.
[100] Chen, J. and Kang, S. M., 2001, “Dynamic macromodeling of MEMS mirror devices”, Int. Meeting of Electron Devices, IEEE, pp. 4151-4154.
[101] Chen, J. and Kang, S. M., 2001, “Model-order reduction of nonlinear MEMS devices through arclength-based Karhunen-Loeve decomposition”, Int. Symp. on Circuits and Systems, IEEE, pp. 457-460.
[102] Gabbay, L. D., Mehner, J. E. and Senturia, S. D., 2000, “Computer-aided generation of nonlinear reduced-order dynamic macromodels-I: non-stress-stiffened case”, J. Microelectromechanical Systems, vol. 9, No.2, pp. 262-269.
[103] Srikar, V. T. and Senturia, S. D., 2002, “The reliability of microelectromechanical systems (MEMS) in shock environments”, J. Microelectromechanical Systems, vol. 11, No.3, pp. 206-214.
[104] Lai, W. P. and Fang, W., 2002, “Novel bulk acoustic wave hammer to determinate the dynamic response of microstructures using pulsed broad bandwidth ultrasonic transducers”, Sensors and Actuators, vol. A96, pp. 43-52.
[105] McCarthy, B., Adams, G. G., N. McGruer, E. and Potter, D., 2002, “A dynamic model, including contact bounce, of an electrostatically actuated microswitch”, J. Microelectromechanical Systems, vol. 11, No.3, pp. 276-283.
[106] Petitgrand, S., Courbet, B. and Bosseboeuf, A., 2003, “Characterization of static and dynamic optical actuation of Al microbeams by microscopic interferometry techniques”, J. Micromech. Microeng., vol. 13, pp. S113-S118.
[107] Lin, W. Z, Lee, K. H., Lim, S. P. and Liang, Y. C., 2003, “Proper orthogonal decomposition and component mode synthesis in macromodel generation for the dynamic simulation of a complex MEMS device”, J. Micromech. Microeng., vol. 13, pp. 646-654.
[108] Spengen, W. M., Puers, R., Mertens, R. and De Wolf, I., 2003, “A low frequency electrical test set-up for the reliability assessment of capacitive RF MEMS switches”, J. Micromech. Microeng., vol. 13, pp. 604-612.
[109] Adomian, G. and Rach, R., 1983, “Inversion of nonlinear stochastic operators”, J. of Mathematical Analysis and Applications, vol. 91, pp. 39-46.
[110] Adomian, G., 1983, “Stochastic Systems”, Academic Press, London.
[111] Adomian, G., 1986, “Nonlinear Stochastic Operator Equations”, Academic Press, London.
[112] Rach, R., 1984, “A convenient computational form for the Adomian polynomials”, J. of Mathematical Analysis and Applications, vol. 102, pp. 415-419.
[113] Adomian, G. and Rach, R., 1996, “Modified Adomian polynomials”, Mathl. Comput. Modelling, vol. 24, pp. 39-46.
[114] Gabet, L., 1994, “The theoretical foundation of the Adomian method”, Computers. Math. Appl., vol. 27, pp. 41-52.
[115] Abbaoui, K., Cherruault, Y. and Seng, V., 1995, “Practical formulae for the calculus of multivariable Adomian polynomials”, Math. Comput. Modelling, vol. 22, pp. 89-93.
[116] Wazwaz, A. M., 1998, “A comparison between Adomian decomposition method and Taylor series method in the series solution”, Appl. Math. and Comput., vol. 97, pp. 37-44.
[117] Venkatarangn, S. N. and Rajalakshmi, K., 1995, “A modification of Adomian’s solution for nonlinear oscillatory systems”, Computers Math. Applic., vol. 29, pp. 67-73.
[118] Shawagfeh, N. T., 1996, “Analytic approximate solution for a nonlinear oscillator equation”, Computers Math. Applic., vol. 31, pp. 135-141.
[119] Adomian, G., 1996, “Solution of coupled nonlinear partial differential equations by decomposition”, Computers Math. Applic., vol. 6, pp. 117-120.
[120] Lesnic, D. and Elliott, L., 1999, “The decomposition approach to inverse heat conduction”, Math. Anal. Appl., vol. 232, pp. 82-98.
[121] Wazwaz, A. M., 1999, “A reliable modification of Adomian decomposition method”, Appl. Math. and Comput., vol. 102, pp. 77-86.
[122] Wazwaz, A. M., 2000, “Approximate solutions to boundary value problems of higher order by the modified decomposition method”, Computers Math. Applic., vol. 40, pp. 679-691.
[123] Wazwaz, A. M., 2001, “The numerical solution of sixth-order boundary value problems by the modified decomposition method”, Appl. Math. and Comput., vol. 118, pp. 311-325.
[124] Chiu, C. H. and Chen, C. K., 2002, “A decomposition method for solving the convective longitudinal fins with variable thermal conductivity”, Int. J. Heat Mass Transfer, vol. 45, pp. 2067-2075.
[125] Bellman, R. E., Kashef, B. G. and Casti, J., 1972, “Differential quadrature: A technique for the rapid solution of nonlinear partial equations”, J. Comput. Phys., vol. 10, pp. 40-52.
[126] Feng, Y. and Bert, C. W., 1992, “Application of the quadrature method to flexural vibration analysis of a geometrically nonlinear beam”, Nonlinear Dynamics, vol. 3, pp. 13-18.
[127] Wang, X. and Bert, C. W., 1993, “A new approach in applying differential quadrature to static and free vibration analysis of beams and plates”, J. Sound Vibration, vol. 162(3), pp. 566-572.
[128] Bert, C. W. and Malik, M., 1996, “Free vibration analysis of tapered rectangular plates by differential quadrature method: a semi-analytical approach”, J. Sound Vibration, vol. 190(1), pp. 41-63.
[129] Chen, W. and Zhong, T. X., 1997, “The study on the nonlinear computations of the DQ and DC methods”, J. Numerical Method for Partial Differential Equations, vol. 13, pp. 57-75.
[130] Tomasiello, S., 1998, “Differential quadrature method: application to
initial-boundary-value problems”, J. Sound Vibration, vol. 218(4), pp. 573-585.
[131] De Rosa, M. A. and Franciosi, C., 1998, “On natural boundary conditions and DQM”, Mechanics Research Communications, vol. 25, No. 3, pp. 279-286.
[132] Shu, C. and Wang, C. M., 1999, “Treatment of mixed and nonuniform boundary conditions in GDQ vibration analysis of rectangular plates”, Engineering Structures, vol. 21, pp. 125-134.
[133] Shu, C. and Chen, W., 1999, “On optimal selection of interior points for applying discretized boundary conditions in DQ vibration analysis of beams and plates”, J. Sound Vibration, vol. 222(2), pp. 239-257.
[134] Wu, T. Y. and Liu, G. R., 2000, “The generalized differential quadrature rule for initial-value differential equations”, J. Sound Vibration, vol. 232(2), pp. 195-213.
[135] Chen, C. N., 2000, “Vibration of prismatic beam on an elastic foundation by the differential quadrature element method”, J. Computers and Structures, vol. 77, pp. 1-9.
[136] Chen, W., Shu, C., He, W. and Zhong, T., 2000, “The application of special matrix product to differential quadrature solution of geometrically nonlinear bending of orthotropic rectangular plates”, J. Computers and Structures, vol. 74, pp. 65-76.
[137] Chou, Y. T. and Choi, S. T., 2000, “Modified differential quadrature and element methods in structural mechanics”, National Cheng Kung University Dissertation for Doctor of Philosophy.
[138] Liu, G. R. and Wu, T. Y., 2000, “Numerical solution for differential equations of duffing-type non-linearity using the generalized differential quadrature rule”, J. Sound Vibration, vol. 237(5), pp. 805-817.
[139] Liu, G. R. and Wu, T. Y., 2001, “Vibration analysis of beams using the generalized differential quadrature rule and domain decomposition”, J. Sound Vibration, vol. 246(3), pp. 461-481.
[140] Wu, T. Y., Liu, G. R. and Wang, Y. Y., 2003, “Application of the generalized differential quadrature rule to initial-boundary-value problems”, J. Sound Vibration, vol. 264, pp. 883-891.
[141] Tanaka, M. and Chen, W., 2001, “Dual reciprocity BEM applied to transient elastodynamic problems with differential quadrature method in time”, J. Computer Methods Appl. Mech. Engrg., vol. 190, pp. 2331-2347.
[142] Fung, T. C., 2002, “Stability and accuracy of differential quadrature method in solving dynamic problems”, J. Computer Methods Appl. Mech. Engrg., vol. 191, pp. 1311-1331.
[143] Shu, C., Yao, Q. and Yeo, K. S., 2002, “Block-marching in time with DQ discretization: an efficient method for time-dependent problems”, J. Computer Methods Appl. Mech. Engrg., vol. 191, pp. 4587-4597.
[144] Tomasiello, S., 2003, “Simulating non-linear coupled oscillators by an iterative differential quadrature method”, J. Sound Vibration, vol. 265, pp. 507-525.
[145] Rao, S. S., 1985, “Mechanical Vibration”, Addison-Wesley Publishing Company.
電子全文 電子全文(限國圖所屬電腦使用)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top