跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.30) 您好!臺灣時間:2021/07/25 12:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉炫佑
研究生(外文):Hsuan-yu Liu
論文名稱:奈米磨粒在工件上滾/滑動所衍生之加工現象:分子動力學分析
論文名稱(外文):A study on induced phenomena from rolling/sliding motion of nano-particle on work surface:molecular dynamics analysis
指導教授:蘇耀藤蘇耀藤引用關係
指導教授(外文):Yaw-Terng Su
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:94
中文關鍵詞:分子動力學拋光
外文關鍵詞:molecular dynamicpolish
相關次數:
  • 被引用被引用:1
  • 點閱點閱:86
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在利用分子動力學來探討在拋光過程中磨粒在工件表面上滾動或滑動對工件表面的加工行為所造成的影響。對於除了運動方式的改變所造成的影響之外,另外還有探討下壓深度、磨粒的形狀以及磨粒與工件之間的吸附強度的改變,對於磨粒運動過後的移除量、變質層的數目以及磨粒運動過後所衍生的粗度的所產生的影響。

由模擬中發現,磨粒以滾動運動會比滑動運動來的容易對工件表面的原子造成移除。就滾動運動而言,對工件表面原子會造成移除量的關鍵是磨粒與工件之間的吸附強度必須夠大。就滑動而言,吸附強度不是影響移除量的唯一因素,在滑動過程中欲造成原子的移除,除了吸附強度夠大之外,其磨粒與工件之接觸角也必須夠小才行。

工件表面下的變質層原子在圓球狀磨粒作用下,不管滾動或滑動都會隨著吸附強度增加而增加其數量,另外接觸角的不同也會影響變質層原子的數目。而磨粒衍生的粗度,在滾動過程中吸附強度較小會與吸附強度有關,其他狀況下其趨勢趨於不明顯。
The induced phenomena caused by rolling or sliding action of a nano-particle on the work were considered in this study. The analysis was done by the molecular dynamics method.The effects on the removals of work, the roughness induced by nano-particle and the thickness of the damage layer caused by the depth of indentation, the shape of particle and the adhesive strength btween the particle and the work will also be discussed.

The result shows that the particle in rolling process removed atoms easier than in sliding process. The removals of work in the process of rolling depend on the adhesive strength between the nano-particle and the work. More powerful of the adhesive strength will increase the amount of removal. But, the adhesive strength was not the only factor in the process of sliding. The rake angle between the nano-particle and the work was the important factor, too. In order to remove the atoms during sliding process, not only the adhesive strength must be strong enough but also the rake angle must be small enough.

The increase of the strength between the particle in the shape of ball and the work will cause more amorphous atoms in both rolling and sliding process. The thickness of the damage layer of the work surface was also affected by the rake angle. But the roughness was little affected by the adhesive strength between the nano-particle and the work.
謝誌…………………………………………………………………Ⅰ
目錄…………………………………………………………………Ⅱ
圖索引………………………………………………………………Ⅳ
表索引………………………………………………………………Ⅶ
中文摘要……………………………………………………………Ⅷ
英文摘要……………………………………………………………Ⅸ
第一章 緒論
1.1前言…………………………………………………………1
1.2拋光及其所遭遇困難 ……………………………………2
1.3研究動機……………..……………………………………4
1.4研究方法……………………………………………………4
1.5相關文獻……………………………………………………6
1.6內容簡介……………………………………………………8
第二章 分子動力學簡介
2.1分子動力學的基本原理……………………………………9
2.2位勢能函數介紹……………………………………………10
2.3運動方程式…………………………………………………13
2.4邊界條件……………………………………………………14
2.5 Verlet List及Link Cell法 ……………………………15
2.6平行分子動力學……………………………………………17
第三章 模式及程式的建立
3.1模擬所遇到的困難…………………………………………18
3.2解決的方法…………………………………………………19
3.2.1計算力的簡化 ………………………………………19
3.2.2邊界移動法 …………………………………………21
3.2.3分析的指標 …………………………………………23
3.3程式的規劃…………………………………………………27
第四章 模擬的規畫與結果趨勢
4.1模擬的規劃…………………………………………………31
4.2 模擬結果與趨勢 …………………………………………35
第五章 討論
5.1模擬結果的討論……………………………………………39
5.2 待改進之處 ………………………………………………43
第六章 結論 ………………………………………………………45
【1】Y. T. Su, S. Y. Wang, and J. S. Hsiau, “On machining rate of hydrodynamic polishing process,” Wear, Vol.188, pp.77-87, 1995.
【2】 Y. T. Su, C. C Horng, J. Y. Sheen and J. S. Hsiau, “A Process planning strategy for removing non-axially symmetric form error by hydrodynamic polishing process,” Int. Mach. Tools Manufact., Vol.36, No. 2, pp. 1227-1245, 1996.
【3】Y. T. Su, C. C Horng, S. Y. Wang and J. S. H. Jang, “Ultra-precision machining by hydrodynamic polishing process,” Int. Mach. Tools Manufact., Vol.36, No. 2, pp.275-291, 1996.
【4】Y. T. Su and J. Y. Sheen, “A process planning strategy for removing arbitrary and axially symmetric profile by a polishing process,” Int. Mach. Tools Manufact., Vol.39, pp.187-207, 1999.
【5】 劉松河, 應用液動壓拋光法於工件表面粗度移除效率之實驗分析與探討, 國立中山大學碩士論文,2000.
【6】 陳勇維, 應用液動壓拋光法於工件表面終極粗度之初步探討, 國立中山大學碩士論文,2001.
【7】 蔡政旻, 不同工件表面波長對拋光法於表面粗度之改善極限的探討,國立中山大學碩士論文,2002.
【8】 K. Kendall, “Rolling friction and adhesion between smooth solids,” Wear, Vol.33, p.351-358, 1975.
【9】 K. Kendall, “The effect of shrinkage on interfacial cracking in a bonded laminate,” J. Phys. D., Vol.8, p.1722-1732, 1975.
【10】 K. Kendall, “Kinetics of contact between smooth solids,” J. Adhesion, Vol.7, p.52-72, 1974.
【11】 K. Kendall, N. Alford and J. D. Birchall, “A new method for measuring the surface energy of solids,” Nature, Vol.325, p.194-295, 1987.
【12】 K. Kendall, “Adhesion: molecules and mechanics,” Science, Vol.263, p.1720-1725, 1994.
【13】 許政欽, 奈米磨粒在工件上滾動索引發現象之探討:分子動力法分析,國立中山大學碩士論文,2003.
【14】 洪篤傑, 液動壓拋光法刀具磨耗研究,國立中山大學博士論文,2001.
【15】 L.C. Zhang and Hiroaki Tanaka,“ On the mechanics and Physics in the nano-indentation of silicon monocrystals,” JSME International J., Series A, Vol. 42, No. 4, 1999.
【16】B. Lin, S. Y. Yu and S. X. Wang,” An experimental study on molecular dynamics simulation in nanometer grinding,” Journal of Materials Processing Technology, Vol.138, Pages 484-488, 2003
【17】N. Chandrasekaran, A. Nori Khajavi, L. M. Raff, and R. Komanduri,“ A new method for molecular dynamics simulation of nanometric cutting, ”Phil. Mag. B, Vol. 77, pp.7-26, 1998.
【18】R. Komanduri, N. Chandrasekaran and L. M. Raff ,” Effect of tool geometry in nanometric cutting: a molecular dynamics simulation approach ,” Wear, Vol.219, p.84-97,1998
【19】X. S. Han, B. Lin, S. Y. Yu and S. X. Wang, “ Investigation of tool geometry in nanometric cutting by molecular dynamics simulation,” Journal of Materials Processing Technology, Vol. 129, p.105-108, 2002
【20】Charles H. Henager Jr., and Richard G. Hoagland,” Dislocation core fields and forces in FCC metals”, Scripta Materialia, Vol.50, p.1091-1095,2004
【21】David Rodney,” Molecular dynamics simulation of screw dislocations interacting with interstitial frank loops in a model FCC crystal,” Acta Materialia, Vol.52, p.607-614,2004
【22】M. Li, W. Y. Chu, K. W. Gao and L. J. Qiao,” Molecular dynamics simulation of healing of an ellipsoid crack in copper under compressive stress” Materials Letters, Vol.58, p.543-546, 2004
【23】 D. Cheong, L. C. Zhang,“ Molecular dynamics simulation of phase transformation in silicon monocrystals due to nano-indentation, ”Nanotech., Vol. 11, pp. 173-180, 2000.
【24】 Yasushi Shibuta and Shigeo Maruyama,” Molecular dynamics simulation of formation process of single-walled carbon nanotubes by CCVD method,” Chemical Physics Letters, Vol.382, p.381-386,2003
【25】 H. Kasem�讚i, A. Aabloo, M. K. Klintenberg and J. O. Thomas,” Molecular dynamics simulation of the effect of nanoparticle fillers on ion motion in a polymer host” Solid State Ionics, Vol.168,
p.249-254,2004
【26】K. Maekawa and A. Itoh,” Friction and tool wear in nano-scale machining—a molecular dynamics approach,” Wear, Vol.188,p.115-122,1995
【27】 J.H.Irving and J.G..Kirkwood,“ The statistical mechanical theroy of transport property. IV. the Equation of hydro-dynamics,” J.Chem.Phys.,Vol.18,pp.817-823, 1950.
【28】 J. M. Haile, “ Molecular dynamics simulation:elementary method ,” Wiley, New York, 1992
【29】 J. Tersoff,“ Modeling solid-state chemistry:Interatomic potentials for multicomponent systems,” Phys. Rev. B, Vol.39, No.8, pp.5566-5568, 1989.
【30】L. Verlet,” Computer ‘Experiment’ on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules,” Phys. Rev.,Vol.159, p98, 1967
【31】 D. C. Rapaport, “ The art of Molecular Dynamics simulation”, Cambridge University Press. London, 1997
【32】 Ravi Murty, and Daniel Okunbor,“ Applications efficient parallel algorithms for molecular dynamics simulations,” Parallel Computing , Vol.25, p. 217-230, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊