跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/08/01 00:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊士弘
研究生(外文):Sish-hung Yang
論文名稱:石墨雙極板在HFC電池組之應用研究與新型非均質碳纖維雙極板性能探討
論文名稱(外文):Studies of Graphite Bipolar Plate applied to a HFC stack and the Performance Studies of a New-type Heterogeneous Composite Carbon Fiber Bipolar Plate
指導教授:陳龍正陳龍正引用關係
指導教授(外文):Long-Jeng Chen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:86
中文關鍵詞:碳纖維雙極板石墨雙極板質子交換膜燃料電池組
外文關鍵詞:proton exchange membrane fuel cellHFCgraphite bipolar platecarbon fiber bipolar plate
相關次數:
  • 被引用被引用:1
  • 點閱點閱:112
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以石墨板製成各種不同流道的質子交換膜燃料電池(PEMFC)組,並以純氫為燃料進行各項實驗測試,以了解HFC的性能特性。實驗包含單電池到各式多電池組的各項測試,本研究的電池組最大功率約200W,此電池乃由兩個10-cell電池組串聯而成。為簡化電池組構造,陰極流道全部採開放式,並以風扇供應空氣。此外利用石墨板製成的單電池亦與本實驗室新發展出的新型碳纖維單/雙極板製作出的單電池做性能比較。為了解這兩種雙極板優劣,兩種雙極板與擴散層在結合後的總電阻亦一併進行實驗測試比較。
當使用雙進氣口流道時,實驗結果發現,在高電流密度時,使用雙進氣口,由於流道口加大,反應氣體較易進入各電池,其輸出電壓與電流密度皆較使用單進氣口流道時高,性能亦較不會明顯下降。當組裝電池組時,因螺栓扭力不足或不均勻,墊片與雙極板間之結合壓力容易分配不均,這種施力或加工精度限制當電池數目愈多時不均勻情形將愈嚴重,因此扭力需相對加大,才可使雙極板與擴散層有較佳接觸以得到較佳之電池效能,但過度加壓可能使擴散層孔隙過度壓迫縮小或石墨板被壓破裂等問題,組裝時需加以注意。
由於本研究陰極流道全部採開放式設計,當電流密度愈高時,風扇轉速需提高以加速氧化劑的供給。本實驗在電流密度1 A/cm2時,單電池之功率密度約為400 mW/cm2,而在10-cell之電池組之功率密度則降到只約310 mW/cm2。
新型碳纖維雙極板製成之單電池,因碳纖維的柔軟性佳,不會壓迫擴散層,因此碳纖維不需非常大之結合壓力,接觸電阻便可降低。此外且因碳纖維間的孔隙,反應氣體容易進入大部分反應區。這種新型雙極板,除碳纖維外,皆可採用低密度塑膠材料,故重量輕且低成本。故未來可考慮採用此種新型非均質碳纖維雙極板取代石墨雙極板,以達到重量輕、低成本及高效能的目標。
The characteristics of the proton exchange membrane fuel cell (called PEMFC) stacks made with the graphite unipolar/bipolar plates are studied in this thesis. Using pure hydrogen as fuel, certain experimental work is conducted to help us to understand the factors which influence on the performance of a HFC stack. The experimental work under various operating conditions starts from single cell stacks to multi-cell stacks. The maximum power is about 200 W, which is made with two 10-cell stacks in series. For simplification, all of the flow channels in the cathode are open type in which air is directly supplied from ambient by fan. The comparison of the performance of two single cells, which are made with both a graphite unipolar plate and a new-type carbon fiber unipolar plate, is conducted. The total resistances of the two types of bipolar plates with gas diffusion layers are tested to help us to understand their strong or weak points.
The experimental results display that the double inlets has better performance than the single inlet due to larger entrance space. Increasing the applied torque will reduce the contact resistance between bipolar plate and diffusion layer and also the gaps between the fibers of carbon cloth. Reducing the contact resistance is helpful in increasing the performance of the cell, but reducing the gaps between fibers will inhibit the entering of reactive gas and is unfavorable for performance; therefore, the proper torque is necessary to obtain the best voltage output.
When air is used as an oxidizer and the flow channel is an open type channel, the fan in high rotating speed is helpful at high current density. The high air volume flow rate can supply sufficient oxidizer and avoid the decay of the voltage output at high current density. At the current density 1 A/cm2, the power density of the single-cell stack is about 400 mW/cm2 and the power density of the 10-cell stack is down to about 310 mW/cm2 in our experiment.
The rib of the carbon fiber unipolar/bipolar plate is soft, so there is no deformation in the gas diffusion layer in stack assembly. Only slight compression is needed to assemble a stack; therefore, the reactive gas can easily flow into the most of active area. This type unipolar/bipolar plate is made with low density plastic except that the rib is made with carbon fiber bunches. Thus the new plate is weight light, cost low and volume small. So it is quite possible that the new-type of carbon fiber plate is used as substitution for the graphite bipolar plate in the future. In that case the light, low cost and high performance choice can be achieved.
目錄
目錄……………………………………………………………………..Ⅰ
圖目錄…………………………………………………………………..Ⅳ
表目錄…………………………………………………………………..Ⅶ
中文摘要………………………………………………………………..Ⅷ
英文摘要………………………………………………………………..Ⅹ
第一章. 緒論……………….………………………………………1
1.1 前言………………………..……………………………………1
1.2 燃料電池之工作原理及種類…………………………………..3
1.2.1燃料電池之工作原理……………………………………. 3
1.2.2 燃料電池之種類………………………………………….3
1.3文獻回顧………………………………………………………….7
1.4研究目的…………………………………………………………13
第二章. 質子交換膜燃料電池組的結構…………………......15
2.1 膜電極極組( Membrane Electrode Assemly,MEA …………15
2.1.1質子交換膜( Proton Exchange Membrane,PEM )..…...16
2.1.2 催化劑(catalyst)…………….…………………………...17
2.1.3電極………………….…………………………………...18
2.1.3.1陽極電極(氫氣側)……………………….…18
2.1.3.2 陰極電極(氧氣側)…………………………20
2.1.4電極的製作………………………………………………20
2.2密封用墊圈………………………………………………….…22
2.3雙極流場板……………………………………….……………22
第三章. 質子交換膜燃料電池之反應機制……………………......25
3.1質子交換膜燃料電池的作用原理………………………...…..25
3.2 質子交換膜燃料電池的反應機制……………………….…...28
第四章. 實驗設備……………………………………………...…..33
4.1 實驗材料…………………………………………………….....33
4.1.1 膜極組……………….………………………………….33
4.1.2雙極流場板………………………………...…………....33
4.1.3 燃料氣體與氧化劑…………………………………....35
4.2 實驗設備與系統組件………………...…………………….......35
4.2.1供氣設備與管路系統….…………………………...….…36
4.2.2進氣加熱及加濕系統….……………………………...….37
4.2.3量測系統….…………………………………………...….38
4.3 系統效能與穩定性…………..…………….………………..….40
4.3.1氫氣隔水加熱裝置……….…………..……………….…40
4.3.2氧氣與空氣加熱裝置……………….……………….…..40
4.3.3恆溫控制箱..………….…………..……………………...41
4.4石墨板接觸電組織測量……..…………...………..……..……41
第五章. 實驗結果與討論……….………………………….…….43
5.1 單電池之性能測試………………………………………….....43
5.1.1燃料溫度的影響…………………………………………44
5.1.2螺栓扭力的影響……………………………..…………..44
5.1.3進氣壓力的影響………..………………………………..45
5.1.4單電池之比較…………………………………………....46
5.2電池組之性能測試………………………………………..…....46
5.2.1 4cells電池組之性能比較……………..……………..…..47
5.2.2 10 cells與20 cells電池組之性能比較…..……….……..49
5.3石墨單電池與碳纖維單電池之性能比較…………………….53
第六章. 結論與建議…………………………….………………….....56
參考文獻……………………………………………………....…….…...61









圖目錄
圖2.1 燃料電池組解剖示意圖………………………………………...65
圖3.1 質子交換膜燃料電池之工作原理示意圖...................................66
圖4.1 單進氣口電池組之陽極流道示意圖,流道面積比為63﹪.......67
圖4.2 雙進氣口電池組之陽極流道示意圖,流道面積比為63﹪.......67
圖4.3 電池組陰極流道示意圖,流道面積比為57﹪…………….......68
圖4.4 單進氣口電池組用流道照片…………………………………...69
圖4.5 雙進氣口電池組用流道照片…………………………………...69
圖4.6 雙進氣口之10 cells電池組組合後照片..……………………...70
圖4.7 雙進氣口之20 cells電池組組合後照片..……………………...70
圖4.8 測試系統照片…………………………………………………...71
圖4.9 質子交換膜燃料電池測試系統示意圖…………………….......72
圖4.10 氫氣隔水加熱設備……………………………………………...73
圖4.11 空氣與氧氣加熱設備…………………………………………...73
圖4.12 蒸汽加濕系統設備……………………………………………...74
圖4.13 加熱水槽溫度時間曲線…………………………………….......74
圖4.14 氫氣側溫控器設定溫度、保溫儲存槽內溫與輸出到電池的氣體溫度差距變化…….…………………………….........................75
圖4.15 空氣與氧氣加熱溫度時間曲線………………………………...75
圖4.16 空氣與氧氣側溫控器設定溫度、加熱管內溫與輸出到電池的氣體溫度差距變化………………………………………...............76
圖4.17 恆溫箱與單電池溫度時間變化曲線…………………….……..76
圖4.18 蒸汽壓力控制閥設定為1.7 kg/cm2,蒸汽壓力與時間變化曲線………………………………………………………………77
圖4.19 石墨雙極板接觸電阻量測設備………………………………77
圖5.1 雙進氣口之單電池在不同溫度下之電壓與電流密度之關係圖
………………………………………………………………..78
圖5.2 雙進氣口之單電池在不同結合扭力下之電壓與電流密度之關係圖……………………………………………………………78
圖5.3 雙進氣口之單電池在不同進氣壓力下之電壓與電流密度之關係圖……………………………………………………………79
圖5.4 單進氣口與雙進氣口單電池之電壓與電流密度特性曲線比較圖………………………………………………………………79
圖5.5 雙進氣口之4 cells電池組與個別單電池之電壓與電流密度之關係圖……………………………………………………………80
圖5.6 雙進氣口之4 cells電池組在負載為0.15Ω,電流密度為0.4 A/cm2時,溫度隨著時間而變化的關係圖…..……………...80
圖5.7 單進氣口與雙進氣口4-cell電池組之電壓與電流密度特性曲之比較圖…………………………………………………………81
圖5.8 雙進氣口之10 cells電池組在不同溫度下之電壓與電流密度之關係圖…………………………………………………………81
圖5.9 雙進氣口之10 cells電池組在不同扭力下之電壓與電流密度之關係圖……………………………..…………………………..82
圖5.10 雙進氣口之10 cells 電池組在不同進氣壓力下之電壓與電流密度之關係圖………..………………………...……….………..82
圖5.11 雙進氣口之10 cells電池組在不同空氣流量下之電壓與電流密度之關係圖………………………………………..….…….…83
圖5.12 兩組雙進氣口之10 cells電池組之電壓與電流密度特性曲之比較圖.…………………………………………………...…..…...83
圖5.13 雙進氣口之20 cells電池組之電壓與電流密度特性曲線之關係圖...……......................................................................................84
圖5.14雙進氣口之10-cell電池組、20-cell電池組的電壓與電流密度與power之關係圖…………………………………………………84
圖5.15 石墨雙極板和碳纖維雙極板個別與雙極碳布結合總電阻隨壓力變化之比較圖…….…..…………………………………………85
圖5.16 雙進氣口之石墨單電池與碳纖維單電池之電壓與電流密度特性曲線之比較圖……….……………………………………….......85
表目錄
表1.1各種燃料電池基本特性比較……………………………………..86
參考文獻
1. "Effect of direct liquid water injection and interdigitated flow field on the performance of proton exchange membrane fuel cells, " Wood, D.L., Yi, J.S., and Nguyen, T.V, Electrochmica Acta, Vol. 43, No. 24, pp. 3795-3809 , 1998
2. "Multicomponent transport in porous exchange membrane fuel cells using interdigitated gas distributors, " Yi, J.S. and Nguyen, T.V.,J.
Electrochemical Society, Vol. 146, pp. 38-45 , 1999
3. "Metallic bipolar plates for PEM fuel cells," J. Wind, R. späh, W. Kaiser, G. Böhm, Journal of Power Sources, 105, 256-260, 2002.
4. "Performance and lifetime analysis of the kW-class PEMFC stack," S. Y. Ahn, S. J. Shin, H. Y. Ha, S. A. Hong, Y. C. Lee, T. W. Lim, I. H. Oh, Journal of Power Sources, 106 , 295-303, 2002.
5. "Development of 1 kW class polymer electrolyte membrane fuel cell power generation system," H. I. Lee, C. H. Lee, T. Y. Oh, S. G. Choi, I. W. Park, K. K. Baek, Journal of Power Sources, 107, 110-119, 2002.
6. "PEM fuel cell stacks operated under dry-reactant conditions," Zhigang Qi, Arthur Kaufman, Journal of Power Sources, 109, 469-476, 2002.
7. "The influence of carbon dioxide on PEM fuel cell anodes," F. A. de Bruijn, D. C. Papageorgopoulos, E. F. Sitters, G. J. M. Janssen, Journal of Power Sources, 110, 117-124, 2002.
8. "Activation of low temperature PEM fuel cells," Zhigang Qi, Arthur Kaufman, Journal of Power Sources, 111, 181-184, 2002.
9. "Evaluation of current distribution in a proton exchange membrane
fuel cell by segmented, " Rajalashmi, N., Raja, M., and Dhathathreyan, K.S., Journal Power Sources, Vol. 112, pp. 331-336 , 2002
10. "Membrane electrode gasket assembly (MEGA) technology for polymer electrolyte fuel cells" A. Pozio , L. Giorgi , M. De Francesco , R.F. Silva , R. Lo Presti , A. Danzi , Journal of Power Sources, 112, 491-496, 2002.
11. "Effect of channal dimensions and shape in the flow-field distributor on the peformance of polymer electrolyte membrane fuel cells" Atul Kumar , Ramana G, Reddy , Journal of Power Sources, 113, 11-18, 2003
12. "An innovative process for PEMFC electrodes using the expansion of Nafion film" C. H. Hsu , C. C. Wan , Journal of Power Sources, 115, 268-273, 2003
13. "Bipolar plates for PEMFC cells" E. Middelman , W. Kout , B. Vogelaar , J. Lenssen , E. de Waal , Journal of Power Sources, 118, 44-46, 2003
14. "燃料電池",薛康琳,彭裕民,工業材料雜誌,202期,第112-121頁,92年10月。
15. "燃料電池發展的新趨勢",倪銘良,能源季刊第三十二卷,第二期,第102-113頁,91年 4月。
16. "廿一世紀之明星產業-燃料電池",謝季壽,中興工程,第七十八期,第109-119頁。
17. "燃料電池" 黃鎮江 編著,全華科技圖書股份有限公司,92年11月。
18. "燃料電池-高效、環保的發電方式" 衣寶廉 編著,五南圖書出版股份有限公司,2003年4月
19. "實驗方法探討質子交換膜燃料電池在不同設計條件及製作方式下對性能影響之研究",熊思愷,碩士論文,國立中山大學機械工程研究所,中華民國九十年六月。
20. "質子交換膜燃料電池含溫濕度控制之參數最佳化分析與電池製作",廖明祥,碩士論文,國立中山大學機械工程研究所,中華民國九十一年六月。
21. "質子交換膜燃料電池組之製作與性能最佳化研究",莊雲羽,碩士論文,國立中山大學機械工程研究所,中華民國九十二年六月。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top