跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/30 14:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱逸宏
研究生(外文):Yi-hung Chiu
論文名稱:液動壓拋光法之非等向性拋光特性之初步研究
論文名稱(外文):A preliminary study on anisotropic polishing behaviors of hydrodynamic polishing process
指導教授:蘇耀藤蘇耀藤引用關係
指導教授(外文):Su, Yaw-Terng
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:170
中文關鍵詞:非等向性拋光等向表面粗度非等向表面粗度
外文關鍵詞:anisotropic polishingisotropic surface roughnessanisotropic surface roughness
相關次數:
  • 被引用被引用:1
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在探討應用液動壓拋光法(HDP)進行拋光時其非等向性拋光特性對工件所產生的拋光行為是否與磨粒的運動方向有關係。研究中將進行兩種類別實驗,第一類實驗,是針對原始表面為等向性表面粗度的工件進行拋光,觀察其在五個方向上的粗度移除效率隨著角度的變化。第二類實驗,則針對原始表面為非等向性表面粗度的工件進行縱向、橫向、斜向粗度拋光,觀察各粗度移除效率的變化。並且兩類實驗都進行假設檢定判斷移除效率的差異是否顯著。

對於等向性表面粗度的實驗結果以假設檢定來檢定時,皆無法推翻假設。至於非等向性表面粗度的實驗結果,假設檢定幾乎都被推翻。於是提出理論分析討論影響粗度移除效率的因素,來解釋非等向性表面粗度拋光時所遇到的困惑,其原因可能為不同的潤滑效應所造成。以潤滑理論中不同型態的表面粗度對潤滑效應所產生的影響來驗證所提出的解釋能夠適用。並以實驗結果的迴歸分析,來說明理論與實驗的一致性。

由實驗的結果與理論的分析可以得到結論: 液動壓拋光法之非等向性拋光特性對工件產生的拋光行為可能與磨粒運動方向無關。
This study is to investigate that the polishing behavior will be independent of or dependent on the direction of particle motion by the anisotropic polishing phenomenon of hydrodynamic polishing process under the semi-contact lubricating condition. There are two types of experiments to be examined to get to the objectives. First, taking polishing on the work surface which possesses the isotropic surface roughness, to discuss the variation of the smoothing efficiency of the surface irregularities in the five different directions on the work surface. Second, taking three kinds of polishing, “longitudinal, transverse, and oblique roughness polishing”, on the work surface which possesses the anisotropic surface roughness. Then to discuss the variation of the smoothing efficiency of the surface irregularities on the work surface.
Both the results of two types experiments should be take to distinguish
the difference between one smoothing efficiency and the others from
using the hypothesis testing.

All hypothesis tests about the experiment results of the work piece which possesses the isotropic surface roughness are accepting .
But, most hypothesis tests about the experiment results of the work piece which possesses the anisotropic surface roughness are rejecting .
The theory analysis about the smoothing efficiency is discussing. The discussion about the smoothing efficiency can explain the phenomenon due to taking polishing on the work surface which possesses the anisotropic surface roughness. The reason why the phenomenon happened is possible the effects of different lubrication condition. Last, from the lubrication theory, the effects of different lubrication condition due to different surface texture can be employed to verify the explanation about the phenomenon is suitable.

The conclusion from the experiment results and the theory analysis
is: the polishing behavior is possible independent of the direction of particle motion by the anisotropic polishing phenomenon of hydro- dynamic polishing process under the semi-contact lubricating condition.
謝誌 ………………………………………………………………I
目錄………………………………………………………………II
圖索引………………………………………………………………IV
表索引…………………………………………………………………VII
中文摘要………………………………………………………………IX
英文摘要………………………………………………………………X


第一章 緒論…………………………………………………………1
1.1 前言……………………………………………………………2
1.2 研究動機………………………………………………………5
1.3 液動壓拋光法簡介……………………………………………6
1.4 研究內容簡介…………………………………………………9

第二章 液動壓拋光法加工機制與加工率特性回顧…………………10
2.1 非接觸潤滑狀態下的加工機制……………………………10
2.2 半接觸潤滑狀態下的加工機制……………………………12
2.3 非接觸潤滑狀態下的加工率特性………………………13
2.4 半接觸潤滑狀態下的加工率特性……………………………18
2.5 不同潤滑條件所造成的影響………………………………24

第三章 非等向性拋光之實驗規劃與分析……………………………26
3.1實驗設計理念…………………………………………………26
3.2 實驗規劃……………………………………………………31
3.2.1等向性表面粗度工件實驗……………………………31
3.2.2 非等向性表面粗度工件實驗…………………………35
3.3 實驗系統儀器簡介…………………………………………39
3.4 實驗結果……………………………………………………43
3.4.1 等向性表面粗度工件實驗結果………………………43
3.4.2 非等向性表面粗度工件實驗結果……………………45
3.5 討論…………………………………………………………48

第四章 非等向性拋光之理論分析……………………………………49
4.1 粗度移除效率理論回顧……………………………………49
4.2 粗度移除效率參數影響……………………………………52
4.2.1 工件表面粗度差異的影響……………………………53
4.2.2 磨粒尺寸大小的影響…………………………………53
4.2.3 不同性質材料的影響…………………………………54
4.3潤滑理論分析……………………………………………55
4.4 迴歸分析………………………………………………58
4.5 討論…………………………………………………………60

第五章 討論……………………………………………………………62
5.1 等向性表面粗度實驗 ………………………………………62
5.2 非等向性表面粗度實驗……………………………………62

第六章 結論……………………………………………………………64

參考文獻………………………………………………………………66
附錄……………………………………………………………………156
【1】Y. T. Su, T. C. Hung, and C. C. Weng, “Ultra-precision machining by the cylindrical polishing process,” International Journal of Machine Tools and Manufacture,” Vol. 43, pp. 1197-1207, 2003.
【2】劉松河,應用液動壓拋光法於工件表面粗度移除效率之實驗分
析與探討,國立中山大學碩士論文,2000.
【3】歐陽謂城譯,精密模具之超精度加工,全華科技圖書公司,1992.
【4】R. Brüggemann, P. Reinig, and M. Hölling, “Thickness dependence of optical scattering and surface roughness in microcrystalline silicon” Thin Solid Films ,Vol. 427, Issue: 1-2, pp. 358-361, March 3, 2003.
【5】S. F. Soares, et al., “Float-polishing process and analysis of float- polished quartz,” Applied Optics, Vol. 33, No. 1, pp. 85-95, 1994.
【6】T. Kasai, F. Matumoto, and A. Kobayashi, “Newly developed fully automatic polishing machines for obtainable super-smooth surfaces of compound semiconductor wafer,” Annals of CIRP, Vol. 37, No. 1, pp. 537-540, 1988.
【7】M. Ikeda, “Study on grinding and polishing method with lip type tools for obtaining middle class diameter spherical lenses,” Int. J. Japan Soc. Prec. Eng., Mar, Vol. 27, No. 1, pp. 41-46, 1993.
【8】M. Ikeda, “Theoretical analysis and spherical polishing with newly proposed non-contact spherical polishing method using lip type tools,” Int. J. Japan Soc. Prec. Eng., June, Vol. 27, No. 2, pp. 107- 112, 1993.
【9】Y. Mori., K. Yamauchi, and K. Endo, “Elastic emission machining,” Precis. Eng., Vol. 9, No. 3, pp. 123-128, 1987.
【10】Y. Mori., K. Yamauchi, and K. Endo, “Mechanisms of atomic removal in elastic emission machining,” Int. J. Japan Precision Eng., Vol. 110, No. 1, pp. 24-28, 1988.
【11】Y. Mori., and K. Endo, “Interaction force between solids surfaces (part 1): An atomistic estimation of interaction force,” Japan J. of Trib., Vol. 37, No. 5, pp. 525-537, 1992.
【12】Y. Higashi, et al., “New machining method for making precise very smooth mirror surfaces made from Cu and Al alloys for synchrotron optics,” Rev. Sci. Instrum., Vol. 60, No. 7, pp. 2120- 2123, 1989.
【13】Z. Stavreva, D. Zeidler, M. Plötner, and K. Drescher, “Characteristics in chemical-mechanical polishing of copper : Comparison of polishing pads,” Applied Surface Science , Vol. 108, Issue 1, pp. 39-44, January , 1997.
【14】S. W. Park, C. B. Kim, S. Y. Kim, and Y. J. Seo, ”Design of experimental optimization for ULSI CMP process applications,” Microelectronic Engineering , Vol. 66, Issue 1-4, pp. 488-495, April, 2003.
【15】T. F. A. Bibby, J. A. Adams, K. Holland, G. A. Krulik, and P. Parikh, “CMP CoO reduction: slurry reprocessing,” Thin Solid Films, Vol. 308-309, Issue 1-4, pp. 538-542, October 31, 1997.
【16】 R. Carpio, J. Farkas, and R. Jairath, “Initial study on copper CMP slurry chemistries,” Thin Solid Films , Vol. 266, Issue 2, pp. 238-244, October 1, 1995.
【17】Y. J. Seo, S. Y. Kim, Y. O. Choi, Y. T. Oh, and W. S. Lee, “Effects of slurry filter size on the chemical mechanical polishing (CMP) defect density,” Materials Letters , Vol. 58, Issue 15, pp. 2091 -2095, June, 2004.
【18】 G. B. Basim, I. U. Vakarelski, and B. M. Moudgil, “Role of interaction forces in controlling the stability and polishing performance of CMP slurries,” Journal of Colloid and Interface Science , Vol. 263, Issue 2, pp. 506-515, July 15, 2003.
【19】R. Komanduri, M. Jiang, and N.O. Wood, “On chemo-mechanical polishing (CMP) of silicon nitride (Si3N4) workmaterial with various abrasives,” Wear , Vol. 220, Issue 1, pp. 59-71, September, 1998.
【20】G. S. Grover, H. Liang, S. Ganeshkumar, and W. Fortino, “Effect of slurry viscosity modification on oxide and tungsten CMP,” Wear Vol. 214, Issue 1, pp. 10-13, January, 1998.
【21】Y. T. Su, J. S. Hsiau, and S. Y. Wang, ”On machining rate of hydro- dynamic polishing process,” Wear , Vol. 188, pp.77-87, 1995.
【22】Y. T. Su, S. Y. Wang, P. Y. Chao, Y. D. Hwang, and J. S. Hsiau, “Investigation of elastic emission machining process : lubrication effects, ” Precision Engineering , Vol. 17, Issue 3, pp. 164-172, July, 1995.
【23】Y. T. Su, C. C. Horng, J. Y. Sheen and J. S. Hsiau, “ A process planning strategy for removing an arbitrary profile by hydro- dynamic polishing process,” Int. J. of M. T. and Ma. , Vol. 36(11), pp. 1227-1245, 1996.
【24】Y. T. Su, C. C. Horng, Y. D. Hwang, and W. K. Guo, ” Effects of tool surface irregularities on machining rate of a hydrodynamic polishing process,” Wear, Vol. 199, pp. 89-99, 1996.
【25】Y. T. Su, C. C. Horng, S. Y. Wang, and S. H. Jang, “Ultra-precision machining by the hydrodynamic polishing process,” International Journal of Machine Tools and Manufacture , Vol. 36, Issue 2, pp. 275-291, February, 1996.
【26】S. Y. Wang, and Y. T. Su, “An investigation on machinability of different materials by hydrodynamic polishing process,” Wear , Vol. 211, pp. 185-191, 1997.
【27】Y. T. Su, Y. Y. Chang, and T. C. Hung, “On machining rate of hydrodynamic polishing process under semi-contact lubricating condition,” Wear, Vol. 220, pp. 22-33, 1998.
【28】Y. T. Su, and Y. C. Kao, “An experimental study on machining rate distribution of hydrodynamic polishing process,” Wear ,Vol. 224, pp. 95-105, 1999.
【29】Y. T. Su, and J. Y. Sheen, “A process planning strategy for removing arbitrary and axially symmetric profile by a polishing process,” Int. J. of Machine Tools and Manufacture , vol. 39, pp. 187-207, 1999.
【30】Y. T. Su, T. C. Hung, and C. C. Horng, “An experimental study on tool wear of hydrodynamic polishing process,” Wear, Vol. 246, pp. 117 -129, 2000.
【31】Y. T. Su, S. H. Liu, and Y. W. Chen, ” A preliminary study on smoothing efficiency of surface irregularities by hydrodynamic polishing process,” Wear, Vol. 249, pp. 808-820, 2001.
【32】B. J. Hamrock, Fundamentals of fluid film lubrication,
McGraw-Hill, international Editions, Singapore, 1994.
【33】N. S. Ong, and V. C. Venkatesh, “Semi-ductile grinding and
polishing of Pyrex glass,” Journal of Materials Processing
Technology ,Vol. 83, Issue 1-3, pp. 261-266, November 1, 1998.
【34】X. Wu, W. Chen, L. Wang, X. Liu, W. Zhang, and X. Chen, “Non-abrasive polishing of glass,” International Journal of Machine Tools and Manufacture , Vol. 42, Issue 4, pp. 449-456, March, 2002.
【35】陳勇維,應用液動壓拋光法於工件表面終極粗度之初步探討,國立中山大學碩士論文,2001.
【36】蔡政旻,不同工件表面波長對拋光法於表面粗度之改善極限的探討, 國立中山大學碩士論文,2002.
【37】章少衡,液動壓拋光法之加工參數模式, 國立中山大學碩士論文,1994.
【38】沈家億,應用液動壓拋光法於形狀誤差補償之加工策略研究, 國立中山大學碩士論文,1995.
【39】N. Gane, P. F. Pfalzer, and D. Tabor, “Adhension between clean surface at light loads”, Proc. R. Soc. London, vol. 340, pp. 495- 517, 1974.
【40】D. Zhu, and H. S. Cheng, “Effect of surface roughness on the point contact EHL,” Journal of Tribology , Vol. 110, pp. 32-37, 1988.
【41】賀力行, 林淑萍, 蔡明春, 統計學 : 觀念、方法、應用, 前程企業管理有限公司, 2003.
【42】A. Papoulis, and S. U. Pillai, Probability,Random Variables and Stochastic Processes, McGraw-Hill Higher Education, Fourth Edition, international edition, 2002.
【43】N. Patir, and H. S. Cheng, “An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication,” Transactions of the ASME, vol. 100, pp.12-17, 1978.
【44】Xiaolan Ai, abd H. S. Cheng, “ The effects of surface texture on EHL point contact,” Journal of tribology, vol. 118, pp.59-66,1996.
【45】N. Patir, and H. S. Cheng, “Application of average flow model to lubrication between rough sliding surface,” Journal of lubrication technology, vol. 101, pp. 220-230, 1979.
【46】林宏諭, 林建宏, 萬衛華, Excel 97 中文版進階應用大全: 資料管理、統計決策分析與市場調查, 博碩文化, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top