跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/07/31 09:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳政樺
研究生(外文):Cheng-Hua Wu
論文名稱:錫-鉛與錫-銀-銅錫球疲勞壽命公式之研究
論文名稱(外文):Fatigue Lifes of Sn/Pb and Sn/Ag/Cu Solder Balls
指導教授:光灼華
指導教授(外文):Jao-Hwa Kuang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:136
中文關鍵詞:等效塑性剪應變疲勞無鉛銲料
外文關鍵詞:CSPCoffin-MansonVCSELFEAequivalent plastic shear strain
相關次數:
  • 被引用被引用:0
  • 點閱點閱:442
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要在建立錫-銀-銅與錫-鉛兩錫球材料疲勞壽命有關之 Coffin-Manson 關係式。文中先配合 CSP 錫球構裝,分別進行熱循環疲勞試驗與錫球推力試驗,再結合有限元素套裝軟體 MARC 程式,計算出不同錫球材料對應之等效塑性剪應變變幅。依據等效塑性剪應變變幅-疲勞壽命關係,導出錫球之 Coffin-Manson 關係式。文中並配合文獻發表之常溫低循環疲勞實驗結果,以印證此公式之適用性。並探討應用所建立 Coffin-Manson 關係式,對 BGA 形式之 CSP與 VCSEL 構件,分別使用錫-銀-銅、錫-鉛材料錫球,探討兩者各別在承受 JESD22-A104A 及 TA-TSY-000983 熱循環規範下,所預估疲勞壽命之差異準確性。數據結果顯示,本研究所提利用銲域局部等效塑性剪應變變幅概念建立之 Coffin-Manson 疲勞壽命預估公式,對錫-銀-銅與錫-鉛錫球疲勞壽命之預估,具頗佳之精度與實用性。
The Coffin-Manson equations of Sn/Ag/Cu and Sn/Pb solder joints are presented in this thesis. The experimental results of CSP thermal cycle fatigue test and ball shear test are used to formulate Coffin-Manson equations. The maximum amplitude of equivalent plastic shear strain corresponding to these two experiments are employed. The MARC finite element package is used to calculate the plastic shear strain. Different published fatigue experiment results have been used to show the accuracy and the feasibility of these proposed equations. The 3-D finite element models of the BGA type’s CSP and VCSEL assembly are employed to simulate the thermal cycling fatigue. Results indicate that the fatigue lifes of solder predicted by using the proposed equations have good agreement with those measured from experimental tests.
目錄 i
圖目錄 iv
表目錄 ix
符號說明 x
摘要 xiii
第一章 緒論 1
1-1 前言 1
1-1-1 簡介 1
1-1-2 研究動機與方法 4
1-2 文獻回顧 5
1-2-1 疲勞壽命理論 5
1-2-2 錫球推力試驗 7
1-3 組織與章節 8
第二章 相關理論與有限元素分析 9
2-1 Surface Evolver 基礎理論 9
2-2 有限元素分析方法 11
2-2-1 力學模式 11
2-2-2 熱分析模式 14
2-2-3 接觸(Contact) 19
2-3疲勞壽命理論模式 25
第三章 錫球疲勞壽命公式之建立 30
3-1 CSP熱循環試驗 30
3-1-1 實驗方法與結果 30
3-1-2 有限元素分析 33
3-2 錫球推力試驗分析 51
3-2-1 實驗方法與結果 51
3-2-2 有限元素分析 53
3-3 錫-銀-銅與錫-鉛錫球疲勞壽命公式 71
3-3-1 等溫低循環疲勞實驗 71
3-3-2 錫-銀-銅錫球之 Coffin-Manson 關係式 95
3-3-3 錫-鉛錫球之Coffin-Manson 關係式 97
3-3-4 錫-銀-銅與錫-鉛疲勞壽命之比較 98
第四章 錫球疲勞壽命預測 103
4-1 模型特性 103
4-1-1 電子封裝—BGA 形式之 CSP 103
4-1-2 光電封裝—VCSEL 構件 104
4-2 銲錫疲勞壽命預估 106
4-2-1 電子封裝之銲錫疲勞壽命預估 106
4-2-2 光電封裝之銲錫疲勞壽命預估 107
4-3 不同疲勞壽命預估公式之比較 109
第五章 結論 128
5-1 結論 128
5-2 未來展望 130
參考文獻 131
附錄A 等溫低循環疲勞實驗之疲勞壽命 136
[1]劉漢誠,1997,球腳格狀陣列封裝技術,鴻海精密工業,台北。
[2]蕭傳議,2003,“IC載板產業 後年將攀新高峰”,經濟日報2003年12月7日。
[3]陳玲蓉,2004,“電子零組件市場景氣與產業趨勢”,工業材料雜誌,207期,pp.78-84。
[4]蘇宗麟,2002,“Sn-3.5Ag/Ag厚膜銲錫球格陣列構裝界面反應研究”,國立台灣大學材料科學與工程所博士論文。
[5]Desai, Chandra S., Whitenack, Russell, 2001, “Review of Models and the Disturbed State Concept for Thermomechanical Analysis in Electronic Packaging,” ASME Journal of Electronic Packaging, 123, pp.19-33.
[6]Frear, D., Morgan, H., Burchett, S., Lau, J., 1994, The Mechanics of Solder Alloy Interconnects, Van Nostrand Reinhold, New York, USA, pp.199-313.
[7]Engelmaier, W., 1983, “Fatigue Life of Leadless Chip Carrier Solder Joints During Power Cycling,” IEEE Trans. Components, Hybrids, Manufact. Technol., 6, pp. 52-57.
[8]Solomon, H. D., 1986, “Fatigue of 60/40 Solder,” IEEE Trans. Components, Hybrids, Manufact. Technol., 9, pp. 423-432.
[9]Solomon, H. D., 1989, “Strain-Life Behavior in 60/40 Solder,” ASME Journal of Electronic Packaging, 111, pp.75-82.
[10]Solomon, H. D., 1989, “Low Cycle Fatigue of Surface mounted Chip Carrier/Printed Wiring Board Joints,” 1989 IEEE Electronic Components Conference, pp.277-292.
[11]Solomon, H. D., 1991, “Low Cycle Fatigue of Sn96 Solder With Reference to Eutectic Solder and a High Pb Solder,” ASME Journal of Electronic Packaging, 113, pp.102-108.
[12]Solomon, H. D., 1991, “The Solder Joint Fatigue Life Acceleration Factor,” ASME Journal of Electronic Packaging, 113, pp.102-108.
[13]Solomon, H. D., 1995, “Energy Approach to the Fatigue of 60/40 Solder:Part I - Influence of Temperature and Cycle Frequency,” Journal of Electronic Packaging, 117, pp.130-135.
[14]Guo, Q., Cutiongco, E. C., Keer, L. M., Fine, M. E., 1992, “Thermomechanical Fatigue Life Prediction of 63Sn/37Pb Solder,” Journal of Electronic Packaging, 114, pp.145-151.
[15]Lau, J. H., Chong, D. Y. R., 2001, “Flip Chip on Board Solder Joint Reliability Analysis Using 2-D and 3-D FEA Models,” IEEE Transactions on Advanced Packaging, 24, No. 4, pp. 499-506.
[16]Schubert, A., Dudek, R., Auerswald, E., Gollhardt, A., Michel, B., Reichl, H., 2003, “Fatigue Life Models for SnAgCu and SnPb Solder Jints Evaluated by Experiments and Simulation,” 2003 IEEE Electronic Components and Technology Conference, pp.603-610.
[17]Park, T. S., Lee, S. B., 2002, “Isothermal Low Cycle Fatigue Tests of Sn/3.5Ag/0.75Cu and 63Sn/37Pb Solder Joints under Mixed-Mode Loading Cases,” 2002 IEEE Electronic Component and Technology Conference, pp. 979-984.
[18]Zhao, X. J., Zhang, G. Q., Caers, J. F. J. M., Ernst, L. J., 2003, “Solders Fatigue Prediction Using Interfacial Boundary Volume Criterion,” ASME Journal of Electronic Packaging, 125, pp.582-588.
[19]JEDEC Solid State Technology Association, 2000, “Test Method for BGA Ball Shear,” JESD22-B117, JEDEC Solid State Technology Association, Arlington, VA.
[20]Coyle, R. J., Solan, P. P., 2000, “The Influence of Test Parameters and Package Design Features on Ball Shear Test Requirements,” Proceedings of the 26th IEEE International Electronics Manufacturing Symposium, Santa Clara, CA, pp.168-177.
[21]Huang, Xingjia, Lee, S. W. Ricky, Yan, Chien Chun, Hui, Sam, 2001, “Characterization and Analysis on the Solder Ball Shear Testing Conditions,” 2001 IEEE Electronic Components and Technology Conference, 51, pp.1065-1071.
[22]Coyle, R. J., Serafino, A. J., 2002, “Ball Shear versus Ball Pull Test Methods for Evaluating Interfacial Failures in Area Array Packages,”Proceedings of the 27th IEEE International Electronics Manufacturing Symposium, pp.200-205.
[23]Huang, Xingjia, Lee, S. W. Ricky, Yan, Chien Chun, 2002, “Experimental Investigation on the Progressive Failure Mechanism of Solder Balls During Ball Shear Test,” Proceedings 52st Electronic Components &Technology Conference(ECTC), pp.968-973.
[24]Brakke, K., 2003, Surface Evolver Manual, Version 2.20, The Geometry Center, University of Minnesota.
[25]MARC Analysis Research Corporation, 1992, MARC Analysis Reaearch Corporation ,Vol. A, MARC Analysis Research Corporation.
[26]許益誠,1998,“積體電路組件焊域之應力分析”,國立中山大學機械工程研究所碩士論文。
[27]Ellison, G. N., 1989, Thermal Computations for Electronic Equipment , R.E.Krieger Publishing Co.Malabar, FL.pp.31-48.
[28]Fan, S. H., Chan, Y. C., Lai, J. K. L., 2001, “Fatigue Lifetimes of PBGA Solder Joints Reflowed at Different Conveyor Speeds,” ASME Journal of Electronic Packaging, 123, pp.290-294.
[29]Lee, W. W., Nguyen, L. T., Selvaduray, G. S., 2000, “Solder Joint Fatigue Models: Review and Applicability to Chip Scale Package,” Microelectronics Reliability, 40, pp. 231-244.
[30]劉安展,2003,“熱膨脹係數匹配誤差對光電封裝中錫球可靠度之影響”,國立中山大學機械工程研究所碩士論文。
[31]Lau, J. H., Pao, Y. H., 1997, Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies, McGraw-Hill, New York, USA.
[32]Schubert, A., Dudek, R., Walter, H., Jung , E., Gollhardt, A., Michel, B., Reichl, H., 2002, “Reliability Assessment of Flip-Chip Assemblies with Lead-free Solder Joints,” 2002 IEEE Electronic Component and Technology Conference, pp. 1246-1255.
[33]Tan, Q., Lee, Y. C., 1996, “Soldering Technology for Optoelectronic Packaging,” 1996 IEEE Electronic Component and Technology Conference, pp. 26-36.
[34]Solomon, H. D., 1996, “Energy Approach to the Fatigue of 60/40 Solder:Part II - Influence of Hold Time and Asymmetric Loading”, Journal of Electronic Packaging, 118, pp.67-71.
[35]Montgomery, D. C., Runger, G. C., Hubele, N. F., 2002, Engineering Statistics, WILEY, New York, USA, pp.261-274.
[36]許兆民,2001,“面射形雷射二極體之應力與位移分析”,國立中山大學機械工程研究所碩士論文。
[37]Pang, J. H. L., Tan, T.-I., 1998, “Thermo-Mechanical Analysis of Solder Joint Fatigue and Creep in a Flip Chip on Board Package Subjected to Temperature Cycling Loading,” 1998 Electronic Components and Technology Conference, pp. 878-883.
[38]蕭勝中,2001,“錫球承受熱循環與老化試驗時之殘留應力變化”,國立中山大學機械工程研究所碩士論文。
[39]Lau, J. H., 1993, Thermal Stress and Strain in Microelectronics Packaging, Van Nostrand Reinhold, New York, USA., pp. 518-528.
[40]陳信文,2004,“無鉛銲料的基礎性質(四)機械性質與電遷移效應”,電子與材料雜誌,21期,pp.124-142。
[41]劉立晟,2003,“覆晶錫球陣列封裝之無鉛錫球接點可靠度測試”,國立中山大學機械工程研究所碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top