跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 12:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳國偉
研究生(外文):Guo-wei Wu
論文名稱:二維Roesser模型最小實現濾波器於影像濾波之運用
論文名稱(外文):Applications of the Minimal Realization Filters for the Two Dimensional Roesser Model to Image Filtering
指導教授:趙健祥
指導教授(外文):Chien-Hsiang Chao
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:105
中文關鍵詞:最小實現濾波器
外文關鍵詞:Roesser
相關次數:
  • 被引用被引用:0
  • 點閱點閱:125
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文將其Roesser模型最小實現理論運用到從Roeeser模型中所衍生出來的Roundoff雜訊之演算法則,以達到將雜訊極小化。

首先介紹二維線性離散系統各模型,然後挑選其最常用之Roesser模型之理論來做其濾波器之設計。其中對於Roesser模型之轉移函數矩陣、可控與可觀性以及最常使用的各模型之最小實現都予以深入探討。最後,藉由二維Roesser模型最小實現之理論與其所衍生出之Roundoff雜訊理論,成功地設計一成本較低、效果較佳之濾波器,以達到去除雜訊之效果。
The purpose of this paper is to minimize the noise by applying the theory of the minimal realization of the Roesser model to the algorithm of the Roundoff noise derived from the Roesse model.

First, each model of two dimensional linear systems was introduced. The Roesser model theory in common use is picked out to design the digital filter. Afterwards, transference function matrix, steerability, observability of Roesser model and the minimal realization in common use were discussed in depth. Finally, the theory of minimal realization of two dimensional Roesser model and the Roundoff noise theory derived from it are used to design a better filter at lower cost successfully to achieve the goal of removing the noise or percolating the noise.
文目錄..………………………………………………………………..i
圖表索引……………………………………………………………….iii
論文摘要(中文)……………………………………………………….vi
論文摘要(英文)……………………………………………………….vii
第一章 緒論
1.1 前言……………………………………………………….1
1.2 研究動機………………………………………………….2
1.3 文獻回顧………………………………………………….3
1.4 內容架構………………………………………………….5
第二章 影像處理應用與簡介
2.1 數位影像資料格式……………………………………….8
2.1.1 空間域數位影像資料格式……………………….....8
2.1.2 空間域數位影像資料格式…………………………..9
2.2 影像數學表示和處理方式.……………………………..10
2.3 範圍影像處理.............................................................11
2.4 影像濾波的定義….…………......................................14
第三章 2-D線性離散系統
3.1 2-D Roesser模型的數學描述…………………………23
3.2 2-D Attas’s和Fornasini-Marchesini’s模型的數學描述
……………………………………………………….......24
3.3 各種典型模型之間之間的相互關係…………...............26
3.4 2-D系統的轉移函數矩陣………………………………..29
3.4.1 2-D Roesser模型的轉移函數矩陣……………......30
3.4.2 2-D Fornasini-Marchesini’s模型的轉移函數
矩陣……………………………………………….....31
3.5 Roesser模型之狀態轉移函數及響應公式………….....33
3.6 2-D系統Roesser模型之可控(可達)與可觀性之
探討………………………………………………..........37
3.6.1 局部可控性和局部可觀性…………………………38
3.6.2 局部可控性……………………………………........38
3.6.3 局部可觀性………………………………………….41
第四章 2-D 系統Roesser模型之狀態空間實現
4.1 2-D Roesser模型全極點與全零點系統狀態空間轉移
函數實現之描述………………………………………....43
4.2 2-D Roesser模型的實現……………………………….53
4.3 單輸入單輸出2-D Roesser模型的最小實現………....60
4.4 單輸入單輸出2-D Roesser模型的典範形實現……....66
第五章 極小化Roundoff雜訊之二維狀態空間數位濾
波器的分析
5.1 雜訊模型的衍生…………………………………………75
5.2 輸出雜訊能量與動態範圍限制…………………………78
5.3 Roundoff雜訊演算法則……………………………......81
第六章 總結與未來展望
6.1 本文總結………………………………………………..100
6.2 未來展望………………………………………………..101

參考文獻
附錄A. 2-D Z變換
[1] 繆紹綱編著, 數位影像處理活用-Matlab , 全華科技圖書股份有限公司, 1999.
[2] 楊武智博士編譯, 影像處理與辨認, 全華科技圖書股份有限公司, 1994.
[3] 連國珍編著, 數位影像處理, 儒林書局, 2003.
[4] 蒙以正編著, Matlab入門與精進, 儒林書局, 2003.
[5] 黃文吉編著, C++ Builder與影像處理, 儒林書局, 2002.

[6] D.D. Givone and R.P. Roesser , "Multidimensional linear iterative circuits-general properties.", IEEE Trans. Computers, vol. 21, pp. 1067-1073, 1972.

[7] D.D. Givone and R.P. Roesser , "Minimization of multidimensional linear iterative circuits. ", IEEE Trans. Computers, vol. 22, pp. 673-678, 1973.

[8] R.P. Roesser, "A discrete state-space model for linear image processing. " , IEEE Trans. Atom. Contr. , vol. 20, pp. 1-10, 1975.

[9] S. Attasi, "Systems linearies homogenes a deux indices. ", Rapport Laboria, vol. 31, Sept. 1973.

[10] E. Fornasini and G. Marchesini, "State –space realization theory of two-dimensional filters. ", IEEE Trans. Autom. Contr. vol. 21, pp. 484-492, 1976.

[11] E. Fornasini and G. Marchesini, "Doubly-indexed dynamical systems state-space models and structure properties. ", Math. Systems Theory, vol. 12, pp. 59-72, 1978.
[12] J. E. Kurek, "The general state-space model for a two-dimensional linear digital system. ", IEEE Trans. Autom. Contr , vol. 30, pp. 600-602, 1985.

[13] Y. S. Lai, "The solution of the two-dimensional polynomial equation. ", IEEE Trans. Circuit systems, vol. 33, pp. 542-544, 1986.

[14] T. Kaczorek, "Proper rational solution to 2-D two-sided polynomial. ", IEEE Trans. Autom. Contr, vol. 32, pp. 826-828, 1987.

[15] J. E. Kurek, "Observability of reconstructibility of the 2-D Fornasini-Marchesini model," IEEE Circuit and Systems, vol. 35,
pp.1011-1014, 1988.

[16] J. E. Kurek, "Controllability of 2-D Roesser model," Multi-
dimensional Systems & Signal Processing, vol. 1, pp. 381-387, 1990.

[17] R. Eising, "Realization and stabilization of 2-D systems," IEEE Trans. Automat. Contr., AC-23,no.5, Oct.1978.

[18] R. Eising, "Controllability and observability of 2-D systems," IEEE Truncations Automatic Control, vol. 24, no. 1, pp. 132-133, 1979.

[19] S.Y. Kung, B. C. Levy,M. Morf, and T. Kailath, "New results in 2-D systems Theory, Part II: 2-D state space models-Realization and the notions of controllability, observability, and Minimality," Proc. IEEE, vol. 65, pp. 945-961, June 1977.

[20] G. E. Antoniou, S. J. Varoufakis, and P. N. Paraskevopoulos, "State-space Realization of 2-D systems via continued fraction expansion,"IEEE Trans. Circuit Syst., vol. CAS-33, pp.926-930, Sept 1986.

[21] K. Galkowski, "The state-space realization of an n-dimensional transfer function," Circuit Theory Appl., vol. 9, pp. 189-197, 1981.
[22] S. S. Koonar and J. S. Sohal, "Realization of two-variable transfer functions," Proc. IEEE, vol. 72, pp. 743~744, June 1984.

[23] N .Haratani and S. I. Takahashi, "Minimally realizable two-
dimensional transfer functions," Electron. Commun. In Japan, vol. 65-A, no. 1, 1982.

[24] D. S. Chan, " A simple derivation of minimal and non-minimal realization of 2-D transfer functions," Proc. IEEE, vol. 66, pp. 515-516, Apr 1978.

[25] S. Varoufakis, P. Paraskevopoulos, G. Antoniou, "On the Minimal State-Space Realization of All-Pole and All-Zero 2-D systems. " ,Circuits and Systems, IEEE Transcations on, vol. 34, Issue: 3, pp. 289-292, Mar 1987.

[26] N. K. Bose, Applied Multidimensional Systems Theory . New York:Van Nostrand Reinhold, pp. 252-257, 1982.

[27] T. Kaczorek, "The singular general model of 2-D systems and its solution. ", IEEE Trans. Autom. Contr. Vol. 33, pp. 1060-1061, 1988.

[28] T. Kaczorek, "General formula and minimum energy control for the general singular model of 2-D systems. ", IEEE Trans. Autom. Contr. , vol. 35, pp. 433-436, 1990.

[29] T. Kaczorek, "Two-dimensional linear systems. ", Springer-Verlag,
Berlin, Heidelberg, 1985.

[30] 何關鈺, 線性控制系統理論, 遼寧人民出版社, 1982.

[31] A. J. Kanellakis and M. J. Theodorou, "Canonical and minimal state-space realizations of two-dimensional transfer functions having separable numerator or denominator. ", Int. J. Systems Sci. , vol. 20, pp. 1213-1219, 1989.
[32] Gu. Guoxiany, J. L. Aravena and Zhou. Kemin, "On minimal realization of 2-D. ", IEEE Trans. Circuit Systems, vol. 38, pp. 1228-1233, 1991.

[33] 楊成悟 等, "一般2D線性常係數離散狀態空間模型漸進穩定
性的一類Lyapunov 方法," 控制理論與應用, vol. 10, no. 1, pp. 87-92, 1993.

[34] T. Hinamoto, T. Hamanaka and S. Maekawa, "A generalized technique for the synthesis of 2-D state-space digital filters with minimum roundoff noise. ", Circuits and Systems, IEEE International Symposium on, vol. 3, pp. 2085-2088, June 1988.

[35] T. Kin, M. Kawamata and T. Higuchi, "A unified study on the roundoff noise in 2-D state-space digital filters," IEEE Trans. Circuit Syst., vol.CAS-33, pp.724-730, July 1986.

[36] T. Hinamoto, T. Hamanaka and S. Mackawa, "A generalized study on the synthesis of 2-D state-space digital filters with minimum roundoff noise," IEEE Trans. Circuits Syst., vol35, pp. 1037-1042
,Aug 1988.

[37] W. Lu and A. Antoniou, "Synthesis of 2-D state-space fixed-point digital-filter structures with minimum roundoff noise", IEEE Trans. Circuit Syst., vol. CAS-33, pp. 965-973, Oct. 1986.

[38] C. T. Mullis and R. Roberts, "Synthesis of minimum roundoff noise fixed point digital filters," IEEE Trans. Circuits Syst. Vol. CAS-23, 551-562, Sept. 1976.

[39] C. Mullis and R. Robert, "Roundoff noise in digital filters: Frequency transformations and invariants. ", IEEE Trans. , vol. 24, Issue 6, pp. 538-550, Dec 1976.

[40] R. P. Roesser, "A discrete state-space model for linear image
processing," IEEE Trans. Automat. Contr., vol AC-20, pp. 1-10,
Feb. 1975.

[41] B. G. Mertzios, "On the roundoff noise in 2-D state-space digital
filtering," IEEE Trans. Circuit Syst., vol. CAS-32, pp. 201-204,
Feb. 1985.

[42] 楊成梧 等,2-D線性離散系統,國防工業出版社, 1995.

[43] Wu-sheng Lu and Andreas Antoniou, "Two-Dimensional Digital Filters" . New York : M. Dekker, 1992.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top