跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/27 20:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝侑霖
研究生(外文):You-lin Sie
論文名稱:負荷與滑動速度對潤滑表面摩擦帶電行為之影響
論文名稱(外文):Effect of load and sliding speed on the behavior of tribo-electrification of lubricated surfaces.
指導教授:邱源成
指導教授(外文):Yuang-Cherng Chiou
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:105
中文關鍵詞:表面電位摩擦帶電
外文關鍵詞:Surface voltageFrictional electrification
相關次數:
  • 被引用被引用:0
  • 點閱點閱:129
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
靜電放電對石化工業、半導體及電子相關產業影響很大,在潤滑系統中因摩擦所造成的火花放電也是促使潤滑油劣化的原因之一。為了瞭解潤滑摩擦的帶電機制,本研究使用迴轉摩擦帶電試驗機及量測系統,以鐵金屬(Fe)及鐵氟龍(PTFE)為試片材料,石蠟基礎油為潤滑劑,在乾摩擦與潤滑條件下探討垂直負荷、滑動速度、滑動距離等實驗參數,對輸出電位的影響。
實驗結果顯示, Fe/PTFE的配對在潤滑條件下表面電位與輸出電位均比乾摩擦情況低。這是由於在潤滑條件下Fe/PTFE的電容效應幾乎不存在。當兩導體被絕緣體分開形成一電容器,如Fe/PTFE的材料配對在乾摩擦下產生電容效應,使摩擦電荷不易消失,故表面電位比潤滑情況下高3~4倍,輸出電位約10倍以上。
此外,潤滑油和PTFE及Fe分別帶有不同極性的電荷。PTFE表面電位和Fe輸出電位為負極性,而潤滑油表面電位為正極性。PTFE表面電位及Fe輸出電位均受負荷、滑動速度及滑動距離之影響。其中PTFE表面電位受負荷影響最顯著,Fe輸出電位受滑動速度的影響最顯著。
ABSTRACT
Electrostatic discharge (ESD) influences a lot in the industries of petrochemistry, semiconductor, and electronics. ESD is one of the reasons for the deterioration of the lubricant in the lubrication system. In this study, to understand the performance of the frictional electrification of the lubricant, the circumrotating frictional electrification tester with the measurement systems is employed to investigate the friction electrification under the dry and lubricated conditions. The materials of the specimens are made of Fe and PTFE, and the paraffin base oil is used as the lubricant. Furthermore, the effects of the load, the sliding speed, and the sliding distance on the friction electrification are investigated.
Results show that the electrification voltage and the surface voltage in the lubricated condition is much lower than in the dry condition for the pair of Fe/PTFE. Because the capacitance effect is almost disappears in the lubricated condition for the pair of Fe/PTFE. When two conductors become a capacitor by inserting an insulator, such as Fe/PTFE in the dry condition, the surface voltage is about 3~4 times higher than in the lubricated condition, and the frictional voltage is about 10 times higher than in the lubricated condition because of the isolator capacitance.
Moreover, the oil, the PTFE and the Fe have different polarities. The surface voltage of PTFE and output voltages of Fe are negative, and surface voltage of oil are positive. The normal load, the sliding speed, and the sliding distance also affect the surface voltage of PTFE and output voltage of Fe. Among them, the load is the most significant parameter for surface voltage of PTFE, the sliding speed is the most significant parameter for output voltage of Fe.
目 錄
頁次
封面 i
授權書 ii
論文口試審定書 iii
謝誌 iv
目錄 v
圖目錄 viii
表目錄 xi
符號說明 xii
中文摘要 xiv
英文摘要 xv
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 研究背景 2
1.4 文獻回顧 3
1.4.1 乾摩擦條件下之摩擦帶電研究 4
1.4.2 滑條件下之摩擦帶電研 8
1.5 本論文之研究目的及方法 14
1.6 本論文架構 15
第二章 靜電基本原理 16
2.1 電磁的發展簡史 16
2.2 靜電產生的原理 17
2.3 靜電的儲存與電容器的充放電 20
2.4 電位、電荷密度與電荷量測 31
2.4.1 電位(Electric potential) 31
2.4.2 電荷密度(charge density) 33
2.4.3 電荷量測(Charge measured) 34
第三章 實驗設備及實驗方法 35
3.1 實驗設備 35
3.1.1 往復式摩擦帶電試驗機 35
3.1.2 負荷控制系統 37
3.1.3 量測系統設備 39
3.2 實驗條件 43
3.2.1 潤滑油性質 43
3.2.2 試片材質與規格 43
3.2.3 試片處理方法 47
3.3 靜態帶電性量測法 47
3.3.1 試片的夾持方法 47
3.3.2 試片的研磨方法 48
3.3.3 試片的量測方法 49
3.4 摩擦帶電量測 50
3.4.1 實驗參數與摩擦狀態 50
3.4.2 摩擦帶電量測法 50
3.5 實驗步驟 54
第四章 實驗結果與討論 56
4.1 帶電性的驗證 56
4.1.1 夾具材料對PTFE表面電位之影響 56
4.1.2 PTFE與導體接觸的帶電性 58
4.1.3 PTFE與絕緣體接觸的帶電性 62
4.1.4 液體對表面電位的影響 66
4.2 摩擦帶電 68
4.2.1 油中摩擦帶電 68
4.2.2 乾摩擦帶電 85
4.3 摩擦帶電極性機制 96
第五章 結論與展望 98
5.1 結論 98
5.2 展望 99
參考文獻 100

















圖 目 錄
頁次
圖1-1 潤滑油的劣化機制 3
圖1-2 同種硬金屬配對下的摩擦帶電機制 7
圖1-3 同種軟金屬配對下的摩擦帶電機制 7
圖1-4 兩種不同金屬材料的接觸電位差 12
圖1-5 不同潤滑狀態下的摩擦帶電種類 13
圖1-6 液體與固體間的電荷雙重層 13
圖1-7 電荷產生的示意圖 14
圖2-1 摩擦帶電 18
圖2-2 使兩金屬球感應等量異性電荷的過程 20
圖2-3 使一金屬球感應與帶電體相異電荷的過程 20
圖2-4 絕緣體被感應成電偶極 21
圖2-5 儲存電荷的電容器 23
圖2-6 電容器的介電質效應 26
圖2-7 介電質在電容器內的微觀性質 26
圖2-8 電容充放電電路 29
圖2-9 (a) 電容充電曲線 (b)電容放電曲線 29
圖2-10 移動電荷獲得電位能 31
圖2-11 電荷量測法之一 34
圖2-12 電荷量測法之二 34
圖3-1 迴轉式摩擦帶電試驗機示意圖 36
圖3-2 應變規校正曲線 38
圖3-3 非接觸表面電位計 41
圖3-4 表面電位計歸零校正 41
圖3-5 電容量檢驗器 41
圖3-6 數位示波器 41
圖3-7 靜態帶電性量測之試片規格 45
圖3-8 動態摩擦帶電量測之試片規格 46
圖3-9 試片的夾持方法 47
圖3-10 PTFE的研磨 48
圖3-11 表面電位量測點 45
圖3-12 表面電位量測點(一) 52
圖3-13 表面電位量測點(二) 52
圖3-14 輸出電位量測 53
圖3-15 實驗之工作流程圖 55
圖4-1 不同夾持法對PTFE研磨表面電位之影響 57
圖4-2 表面電位量測方法 59
圖4-3 接觸前後的PTFE表電位變化 60
圖4-4 PTFE/Fe接觸表面電位下降變化 61
圖4-5 PTFE/壓克力接觸前後的表面電位變化 63
圖4-6 PTFE/壓克力接觸前後的表面電位變化 64
圖4-7 PTFE/壓克力接觸前後的表面電位變化 65
圖4-8 PTFE表面電位量測示意圖 66
圖4-9 PTFE表面加液體對表面電位的影響 67
圖4-10 油中空轉時PTFE之表面電位變化 69
圖4-11 油中空轉時之PTFE表面電位飽和電壓曲線 70
圖4-12 油中空轉時之潤滑油表電位 70
圖4-13 負荷7N,於油中摩擦之PTFE表面電位變化 74
圖4-14 負荷21N,於油中摩擦之PTFE表面電位變化 75
圖4-15 負荷35N,於油中摩擦之PTFE表面電位變化 76
圖4-16 負荷49N,於油中摩擦之PTFE表面電位變化 77
圖4-17 於油中摩擦,滑動速度與PTFE表面電位飽和值關係 78
圖4-18 於油中摩擦,滑動速度與Fe輸出電位關係 79
圖4-19 於油中摩擦,滑動速度與潤滑油表面電位關係 80
圖4-20 於油中摩擦,負荷與PTFE表面電位飽和值關係 81
圖4-21 於油中摩擦,負荷與Fe輸出電位關係 82
圖4-22 PTFE表面刮傷痕跡 83
圖4-23 PTFE於空氣中空轉之表面電位變化 85
圖4-24 負荷7N,於空氣中摩擦之PTFE表面電位變化 86
圖4-25 負荷21N,於空氣中摩擦之PTFE表面電位變化 87
圖4-26 負荷35N,於空氣中摩擦之PTFE表面電位變化 88
圖4-27 乾摩擦下,滑動速度與PTFE表面電位飽和值關係 89
圖4-28 乾摩擦下,滑動速度與Fe輸出電位關係 90
圖4-29 乾摩擦下,負荷與PTFE表面電位飽和值關係 91
圖4-30 乾摩擦下,負荷與Fe輸出電位關係 92
圖4-31 不同負荷及轉速,乾摩擦下之摩擦力 93
圖4-32 潤滑狀態下之摩擦帶電機制 97
圖4-33 無潤滑狀態下之摩擦帶電機制 97
表 目 錄
頁次
表2-1 摩擦帶電序列 21
表2-2 介電常數與介電強度 25
表2-3 電容器的種類 27
表3-1 實驗設備規格表 42
表3-2 電容器規格表 42
表3-3 潤滑油HN的性質 43
表3-4 試片材料的性質 44
表3-5 實驗操作條件 50
























符 號 說 明

頻率,Hz
電流,A
負荷,N
質量,kg
轉速,rpm
轉速,rpm
速度,m/sec
位移,m
電容量,F
電場強度,
力,N
電感,H
功率或電功率,W
( ) 電荷,C
電阻,Ω
磁能,J
電位能,J
木塊的位能,J
木塊的動能,J
電壓或電位,V
電池電壓,V
獨立式上試片輸出電壓,mV
獨立式下試片輸出電壓,mV
迴路式上下試片輸出電壓,mV
移動電荷所作的功,J
電容抗,Ω
介電常數,
真空介電常數或電容率常數,8.85pF/m
介電常數比,
油膜參數,
表面電荷密度,
角頻率,Hz
功函數,
參考文獻

[1]二澤正行,靜電氣對策手冊,歐姆出版社,1989。(日文)
[2]日本潤滑學會編,潤滑便覽,養賢堂(1987)pp.246
[3]K. Nakayama, Tribophysical phenomena and tribochemical reaction, J. Jpn. of Tribologists., 42, 9 (1997) ,pp.712-717.

[4]B. D. Terris, J. E. Stern, D. Ruggr, and H. J. Mamin, Contact electrification using force microscopy”, Physical Review Letters, 63, 24 (1989) ,pp.2669-2672.

[5]S. Sasaki, Effects of tribo-electrification on wear behavior of ceramics, J. of Mechanical Engineering Laboratory, 44, 4 ,(1990) 140-147.

[6]K. Nakayama, and H. Hashimoto, Triboemission of charged particles and photons from wearing ceramic surfaces in various gases, STLE, 35, 4 (1992),pp. 643-650.

[7]K. Nakayama, and H. Hashimoto, Triboemission of charged particles and photons from wearing ceramic surfaces in various hydrocarbon gases, Wear, 185, (1995), pp.183-188.

[8]K. Nakayama, and H. Hashimoto, Effect of surrounding gas pressure on triboemission of charged particles and photons from wearing ceramic surfaces, STLE, 38, 1,(1995) ,pp.35-42.

[9]K. Nakayama, and H. Hashimoto, Triboemission, tribochemical reaction, and friction and wear in ceramics under various n-butane gas pressures, Tribology International, 29, 5, (1996),pp. 385-393.

[10]K. Nakayama, N. Suzuki, and H. Hashimoto, Triboemission of charged photons from solid surfaces during friction damage, J. of Physics D: Applied Physics., 25, (1992) ,pp.303-308.

[11]K. Nakayama, and H. Hashimoto, Triboemission from various materials in atmosphere, Wear, 147, (1991),pp.335-343.

[12]K. Nakayama, Triboemission of charged particles from various solids under boundary lubrication conditions, Wear, 178, (1994), 61-67.

[13]R. G. Cunningham, Frictional electrification of belts of insulating materials, J. of Applied Physics, 35 (1964),pp.2332-2337.

[14]K. Ohara, T. Tonouchi, and S. Uchiyama, Frictional electrification of thin films deposited by the Largmuir-Blodgett method, J. of Physics D: Applied physics., 23,(1990) ,pp.1092-1096.

[15]K. Ohara, and S. Uchiyama, Frictional electrification of fatty accd LB films of which the uppermost layer was deposited on Y-type films by the horizontal lifting method, J. of Physics D: Applied Physics., 25, (1992),pp. 94-99.

[16]J. W. Peterson, Contact charging between a borosilicate glass and nickel, J. of Applied Physics, 25, 4 ,(1954), pp.501-505.

[17]J. W. Peterson, Contact charging between nonconductors and metal, J. of Applied Physics, 25, 7, (1954), pp907-915.

[18]P. E. Wagner, Electrostatic charge separation at metal-insulator contacts, J. of Applied Physics, 27, 11 ,(1956) ,pp.1300-1310.

[19]S. K. Biswas, Friction and wear of PTFE—a review, Wear, 158, (1992),pp. 193-211.

[20]William D. Greason, Investigation of a test methodology for triboelectrification, J. of Electrostatics, 49, (2000),pp. 245-256.

[21]W. R. Harper : Contact and Frictional Electrification, Oxford University Press., London, (1967) ,pp.44-51, .

[22]吉岡禎, 江口正夫, 山本隆司, 摩擦面ズれんペ微小ス電壓發生舉動ズコゆサ(鋼同士ソ乾燥摩擦ソ場合), 日本摩潤學術研討會, (1993) 385-388.

[23]Y. C. Chiou, Y. P. Chang, and R. T. Lee, Tribo-electrification mechanism for self-mated metals in dry severe wear process, part I: pure hard metals, Wear, 254 ,(2003),pp.606-615.

[24]Y. C. Chiou, Y. P. Chang, and R. T. Lee, Tribo-electrification mechanism for self-mated metals in dry severe wear process, part Ⅱ: pure soft metals, Wear, 254, (2003) ,pp.616-624.

[25]T. R. Beck, D. W. Mahaffey & J. H. Olsen :Trans.ASME, J. Basic Eng. 92, (1970), pp.782-791.
[26]Y. Yamamoto, and F. Hirano, “Electrical behavious of phosphate esters”,Wear,50, (1978) ,pp.349-355.

[27]I. L. Goldblatt, “Self-generated voltages and their relationship to wear under boundary lubricated conditions”, Fundametals of Tribology, edited by N. P. suh and N. saka, MIT Press , (1978) pp.981.

[28]遠藤吉郎、福田嘉雄、高宮脩武, “潤滑摩耗的行為與微小電壓的效果”,日本機械學會論文集[第一部],Vol.37, (1971) pp670-676,.

[29]Y. Yamamoto, and F. Hirano, “Scuffing resistance of phosphate ester (2):effect of applied voltage”,Wear,.66, (1981)77-86.

[30]T. Katafuchi, and N. Takano, “Electrical characteristics between lubricated frictional surfaces (1): measurement of voltage-current characteristics between friction surfaces”, J. Jpn. Soc. Lubr. Eng.,(in Japanese), Vol.25,No.6, (1980),pp.395-399.

[31]T. Katafuchi, and N. Takano, “Electrical characteristics between lubricated frictional surfaces (2): the effects of viscosity and degree of refinement of lubricating oils on the voltage-current characteristrics”, J. Jpn. Soc. Lubr. Eng.,(in Japanese), Vol.25,No.6, (1980),400-404,

[32]T. Katafuchi, and N. Takano, “Electrical characteristics between lubricated frictional surfaces (3): the effects of load sliding speed and oil temperature on the voltage-current characteristics”, J. Jpn. Soc. Lubr. Eng.,(in Japanese), Vol.25,No.7, (1980),pp.444-449.

[33]T. Katafuchi, and N. Takano, “Electrical characteristics between lubricated frictional surfaces (4): the effects of atmosphere and EP-additives on the electrical rectification”, J. Jpn. Soc. Lubr. Eng.,(in Japanese), Vol.27,No.2, (1982),pp.129-134.

[34]T. Katafuchi, and N. Takano, “Electrical characteristics between lubricated frictional surfaces (5): the effects of oiliness agents on the voltage-current characteristrics”, J. Jpn. Soc. Lubr. Eng.,(in Japanese), Vol.28,No.7, (1983),pp.524-528.

[35]T. Katafuchi, “Effects of electric current on wear under lubricated conditions (1): electric current-wear characteristics”, J. Jpn. Soc. Lubr. Eng., (in Japanese), Vol.30, No.12,(1985), pp.883-886.

[36]T. Katafuchi, “Effects of electric current on wear under lubricated conditions (2): effects of addition of additives on current-wear characteristics”, J. Jpn. Soc. Lubr. Eng., (in Japanese), Vol.30, No.12, (1985), pp.887-893.

[37]T. Katafuchi, “Electrical characteristics of lubricating film between frictional surfaces “ J. Jpn. Soc. Lubr. Eng., (in Japanese), Vol.36, No.6, (1991),pp.423-428.

[38]A. Takeuchi, M. Satou, and H. Aoki, “ Effect of applied voltage on friction characteristics under mixed lubrication conditions”, J. Jpn. Soc. Lubr. Eng., (in Japanese), Vol.32, No.9, (1987),pp.673-678.

[39]A. Takeuchi, M. Satou, and H. Aoki, “ Effect of electric current on advance of running-in”, J. Jpn. Soc. Lubr. Eng., (in Japanese), Vol.35, No.12, (1990),pp.878-883.

[40]Simon C. Tung, Simon S. wang, “In-Situ Electro-Charging for Friction and Wear Resistant Film Formation”, STLE Trans., Vol.34, No 4, (1991),pp.479-488.

[41]Y. Yamanoto, J. Yagi, H. Higaki, “Effect of externally applied electric field of friction and wear characteristics”, JSME International Journal. Ser. 3 :Vibration, Control Engineering and Engineering for Industry,35(4), (1992),pp.641-646.

[42]李榮宗,邱源成,呂安北 “抑制潤滑損傷之通電方法研究”,國科會研究計畫成果報告,NSC-82-0401-E-110-051(1993).

[43]李榮宗,邱源成,蔣金霓,”外加電場對鋼材潤滑磨耗之影響”,中國機械工程學會第十二屆學術研討會, (1995),pp.65-71.

[44]A. Yano, S. Watanabe, S. Matsumoto, T. Omura and K. Saki, : “A process explanation of orifice choking caused by calcium-detergent in lubricating oil”,日本磨潤學會期刊,Vol.43,No.6,(1998), pp.500-507.

[45]A. Sasaki and T. Yamamoto, “Free redicals and oil auto-oxidation due to spark discharges of static electricity”, Lubr. Eng. , ,(1999), pp.14-21.

[46]A. Sasaki and T. Yamamoto, “Generation of static electricity during oil filtration”, Lubr. Eng. , (1999), pp.24-27.

[47]黃宗正等六人, “變壓器油油流帶電度檢測設備之研製”,台電工程月刊,第624期,(2000),pp.12-28

[48]邱源成,李榮宗,郭文豐,”轉動機械潤滑摩擦面之磨耗監視與診斷研究”,中山大學機械所博士論文,1997.

[49]O. D. Tasbaz and R. J. K. Wood, “Electrostatic monitoring of oil lubricated sliding poing contacts for early detection of scuffing”, wear. 230,(1999), pp.86-97.

[50]T. J. Harvey and R. J. K. Wood, “Investigation of electrostatic charging mechanisms in oil lubricated tribo-contacts”, Tribology Internaltional, 35 ,(2002), pp.605-614.

[51]S. Morris, “Use of electrostatic charge monitoring for early detection of adhesive wear in oil lubricated contacts”,Transactions of the ASME,124,(2002),pp.288-296.

[52]T. J. Harvey and R. J. K. Wood, “Effect of oil quality on electrostatic charge generation and transport”, J. of Electrostatics, 55 (2002), pp.1-23.

[53]Honor Powrie, “Use of electrostatic technology aero engine oil system monitoring”, IEEE,(2002),pp.57-71.

[54]A. Sasaki, “Measurement of the potential of static electricity generated by the friction of oil lubricated metal on metal”, Tribology Transactions,45,(2002),pp.55-60.

[55]吳劍秋 編著, 基礎電磁學, 全華科技圖書公司 印行, (1998)

[56]反口真人, 嵨田繁隆, 柏原久二, 靜電氣學會演講論文集, 第90卷, (1990) 77.

[57]Jean Cross. “Electrostatics:Principles,Problems and Applications”,Adam Hilger,(1987)

[58]村田雄司, “摩擦帶電ソ研究ソ現狀”,Ььユп①ЖЗЬ,(1998),pp.265~270.

[59]木協久智, 摩擦電氣, 潤滑,第28卷, (1983) ,pp168~172.

[60]Qinxue. Yu,Hengkun. Xie and Ningjuan. Hao, “Study on the mechanism of static electrification in transformer oil”,IEEE Inst Elec Japan,(1998),pp.779-781.

[61]蘇友榮 譯, “感應電動機之軸電壓及軸電流防止對策”,電機月刊,12,(1992),pp.89-95.

[62]C. S. Huh and J. L. Jeong, “Method to observe the change of charges in an electric double layer between pressboard and the insulating oil in a power transformer”, IEE ,(2000),pp.83-86.

[63]Harris benson. “University Physics”,John Wiley,(1991).

[64]Richard C. Dorf and James A. Svoboda. “Introduction to electric circuits”,John Wiley,(1999).

[65]Bhushan. “Principles and applications of tribology”,John wiley,(1999).

[66]Ernest Rabinowicz. “Friction and wear of materials”.John wiley,(1995).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top