跳到主要內容

臺灣博碩士論文加值系統

(3.236.28.137) 您好!臺灣時間:2021/07/25 21:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳志明
研究生(外文):Chi-ming Chen
論文名稱:晶片層級之界面接合強度與破壞韌度
論文名稱(外文):Die-Level Interfacial Bonding Strength and Fracture Toughness
指導教授:任明華任明華引用關係
指導教授(外文):Jen ,Ming-Hwa R
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:68
中文關鍵詞:界面破壞精緻混合型夾具
外文關鍵詞:CMMInterfacial Bonding Fracture
相關次數:
  • 被引用被引用:7
  • 點閱點閱:191
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
評估電子構裝中不同材料間之界面黏著力,為評估電子構裝可靠度之重要課題;若界面黏著強度不足,在遭受溫度或外力負載時,界面間之脫層破壞,將嚴重影響構裝體之可靠度。本研究引用雙材料界面破壞力學觀念,以數值模擬搭配實驗來評估構裝中銀膠與晶片間之界面黏著強度,以判斷發生脫層破壞之可能性。
根據線彈性雙材料界面破壞力學,裂縫尖端臨界能量釋放率會隨著裂縫尖端之負載相角而變化。考慮構裝體中銀膠與晶片交界面存在微小界面裂縫,以精緻混合型(CMM; compact mixed-mode )夾具進行實驗,並搭配ANSYS進行有限元素分析求得實際構裝體中所對應之相角及臨界能量釋放率。
It is an important topic for electronic packages to estimate the interfacial bonding strength between dissimilar materials. If it is not strong enough, delamination would arise easily under high temperature, vibration or collision. Its reliability will be reduced. The study on interfacial fracture behavior between epoxy resin and die based on experimental and numerical analyses is investigated, and it is useful to judge where the delamination happens . In terms of interfacial fracture mechanics, the critical strain energy release rate (G ) of crack tip is related to the phase angle (ψ ) . Considering the interface of the epoxy /die existing a tiny crack, the compact mixed mode (CMM) fixture is used to decide the critical load . Finally , we adopt the finite element method to calculate that the critical strain energy release rate (G ) and the phase angle (ψ ) in comparison with empirical results .
目錄
摘要…. I
英文摘要…………………………………………………………… II
目錄…. ……. III
圖、表目錄 VI
第一章 導論 1
1.1前言 1
1.2研究動機 3
1.3文獻回顧 4
1.4研究流程與方法 6
第二章 理論分析 7
2.1雙材料界面破壞力學 8
2.1.1界面裂縫之負載相角與能量釋放率 8
2.2 ANSYS軟體介紹 12
2.2.1 以奇異性元素模擬雙材料裂縫問題…………………. 13
2.3破壞準則 17
第三章 界面破壞軔度的量測 20
3.1實驗方式評估 20
3.2實驗試片 22
3.2.1試片樣式 22
3.2.2試片製作 22
3.3實驗儀器 24
3.3.1實驗步驟 24
第四章 實驗結果與討論 26
4.1實驗目的與方法 26
4.2實驗結果 26
4.3實驗結果討論---試片三 27
第五章 構裝體數值模擬 29
5.1 J積分的使用及相角選取……………………………………..29
5.2 ANSYS內建KI及KII的求法……………………………….30
5.3 範例計算…………………………………………………… 31
5.3.1問題描述………………………………………………….32
5.4 CMM夾具的模擬……………………………………………34
第六章 結果與展望…………………………………………………37
附圖、表 38
參考文獻………………………………………………………………..65
附錄A 67
圖、表目錄
表2-1 晶片和銀膠(2100A)雙材料界面的各項參數………………38
表4-1 材料性質表……………………………………………………39
表5-1 KI、KII及相角之對照表……………….……………………39
圖1.1 MCM BGA……………………………………………… .40
圖1.2 Stacked BGA……………………………………………..40
圖1.3 研究流程圖……………………………………………………41
圖 2-1 兩種破壞類型……………………………………………… 41
圖 2-2 尖端塑性降伏的大小在各區的分佈………………………. 42
圖 2-3 破壞力學三種模式………………………………………… 42
圖2.4 構裝雙材料交界面裂縫的示意圖……………………………43
圖 2-5 負載前後位移的變化…………………………………………43
圖 2-6 裂縫尖端的二次等參元素………………………………….44
圖2-7 奇異性元素……………………………………………………45
圖 2-8 J積分示意圖………………………………………………….46
圖3-1 CMM的尺寸(mm)…………………………………………… 46
圖3-2 CMM夾具設計圖…………………………………………… 47
圖3-3 CMM夾具……………………………………………………. 48
圖3-4 三明治試片………………………………………………… 49
圖3-5 三明治試片………………………………………………….49
圖3-6 製備盤…………………………………………………………50
圖3-7 中間盤………………………………………………………….50
圖3-8 中間試片……………………………………………………….51
圖3-9 INSTRON 8800微拉試驗…………………………………..50
圖3-10 1KN的力量感測器(load cell)………………………………52
圖4-1 試片一及試片二的破壞斷面…………………………………52
圖4-2 (a)上表面的斷面圖……………………………………………53
圖4-2 (b) 下表面的斷面圖………………………………………….53
圖4-3 (a) 上表面的斷面圖………………………………………….54
圖4-3 (b) 下表面的斷面圖………………………………………….54
圖4-4 兩種負載與位移的拉伸線……………………………………55
圖4-5 負載及位移……………………………………………………55
圖4-6 780N對應之斷裂圖…………………………………………..56
圖4-6 代表零度之負載及位移線……………………………………56
圖5-1 裂縫尖端能量釋放率對環形範圍內圈數變化圖……………..57
圖5-2 使用K指令所取的節點……………………………………….57
圖5-3 對稱及反對稱…………………………………………………58
圖5-4 不同的Mesh圈數……………………………………………58
圖5-5 範例一的圖形及邊界條件 ………………………………….59
圖5-6 範例一J積分與理論值的比較………………………………59
圖5-7 範例一J積分求得KI與理論KI值的比較…………………60
圖5-8 範例二的圖形及邊界條件……………………………………61
圖5-9 範例二之J積分與理論值的比較…………………………….61
圖5-10 範例三的圖形及邊界條件………………………………….. 61
圖5-11 範例三之J積分與理論值的比較…………………………….62
圖5-12 CMM有限元素網格…………………………………………62
圖5-13 界面有限元素網格…………………………………………..63
圖5-14 位移法及J積分所計算出的能量釋放率(G)……………… 63
圖5-15 加入LOCTITE324後的網格圖……………………………… 64
圖5-16 尖端打開的形狀…………………………………………… 64
[1] T. L. Anderson, “Fracture Mechanics – Fundamentals and Applications,” Second Edition, CRC Press, 1995.
[2] Suo Z. Mechanics of Interface Fracture : Ph. D. Dissertation, Cambridge : Harvard Univ. 1989.
[3] J. W. Hutchinson and Z. Suo, “Mixed Mode Cracking in Layered Materials,” Advances in Applied Mechanics, Vol. 29, pp. 63-191, 1992.
[4] S. Liu, Y. Mei, and T. Y. Wu, “Bimaterial Interfacial Crack Growth as a Function of Mode-Mixity,” IEEE Trans. Comp., Pkg., Manufact. Technol., Vol. 18, pp. 618-626, 1995.
[5] J. Wang, D. Zou, M. Lu, W. Ren and S. Liu, “Evaluation of Interfacial Fracture Toughness of a Flip Chip Package and a Bimaterial System by a Combined Experimental and Numerical Method,” Engineering Fracture Mechanics, Vol. 64, pp. 787-797, 1999.
[6] J. Wang, M. Lu, W. Ren, D. Zou and S. Liu, “A Study of the Mixed-Mode Interfacial Fracture Toughness of Adhesive Joints Using a Multiaxial Fatigue Tester,” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 22, No. 2, pp. 166-173, 1999.
[7] Q. Yao and J. Qu, “Adhesion Enhancement of Underfill Materials by Silane Additives,” Electronic Components and Technology Conference, pp. 27-30, 1999.
[8] H. L. J. Pang and C. W. Seetoh. “A Compact Mixed Mode (CMM) Fracture Specimen for Adhesive Bounded Joints,” Engineering Fracture Mechanics Vol. 57. No.1.pp57-65,1997. “,”
[9] H. L. J. Pang, X. Zhang, X. Shi, and Z. P. Wang, “Interfacial Fracture Toungness Test Methodology for Adhesive Bounded Joints,” IEEE Transactions on Electronics Packaging Technologies, Vol. 25, No. 2, June 2002.
[10] V. Vroonhoven, J. C. W., “Effects of Adhesion and Delamination on Stress Singularities in Plastic-Packaged Integrates Circurts,” Journal of Electronic Packaging, Vol. 115, pp. 28-32, March 1993.
[11] A. A. O. Tay, G.. L. Tan, T. B. Lim, ”Predicting Delamination in Plastic IC Packages and Determining Suitable Mold Compound Properties,” IEEE Transactions on Components, Packaging, and Manufacturing Technology - Part B, Vol. 172 , pp. 201 –208, May 1994.
[12] T. Saitoh , H. Matsuyama and , M. Toya, “Linear Fracture Mechanics Analysis on Growth of Interfacial Delamination in LSI Plastic Packages under Temperature Cyclic Loadings,” IEEE Transactions on Components, Packaging, and Manufacturing Technology – Part B, Vol. 21, No. 4, pp. 422-427, November 1998.
[13] T. Saitoh , “Numerical Stress of Resin Cracking in LSI Plastic Packages under Temperature Cyclic Loadings,” IEEE Transactions on Components, Packaging, and Manufacturing Technology – Part B, Vol. 19, No. 3, pp. 593-600, August 1996.
[14] T. Saitoh and, M. Toya, “Numerical Stress of Resin Cracking in LSI Plastic Packages under Temperature Cyclic Loadings – PartⅡ : Using Alloy 42 as Leadframe Material,” IEEE Transactions on Components, Packaging, and Manufacturing Technology – Part B, Vol. 20, No. 2, pp. 176-183, May 1997.
[15] J. H. Lau, S. W. R. Lee, “Fracture Mechanics Analysis of Low Cost Solder Bumped Flip Chip Assembiles with Imperfect Underfills,” Journal of Electronic Packaging, Vol. 122 , pp. 306-310, 2000.
[16] 李英舜,葉孟考,“塑封球柵電子構裝之破裂延伸”國立清華大學動力機械工程研究所碩士論文,2000
[17] Chen B. Crack Paths Election in Adhesively Bonded Joints, Ph.D. Dissertation. USA: Virginia Polytechnic Institute , 1999.
[18] P.P. Matos, R.M. McMeeking, P.G.. Charalambides, M.D. Drory, “A Method for Calculating Stress Intensities in Bimaterial Fracture,” International Journal of Fracture, Vol. 40, pp. 235-254, 1989.
[19] N. W. Klingbeil and J. L. Beuth, “Continous Delamination of Sprayed Deposits Via Applied Curvature,” Int. J. Sci., Vol. 40, No. 1, pp. 1-13, 1998.
[20] N. W. Klingbeil and J. L. Beuth, “Interfacial Fracture Testing of Deposited Metal Layers Under Four-Point Bending,” Engineering Fracture Mechanics, Vol. 56, No. 1, pp. 113-126, 1997.
[21] P. G.. Charalambides, J. Lund, A. G.. Evans and R. M. McMeeking, “A Test Specimen for Determining the Fracture Resistance of Bimaterial Interfaces,” Journal of Applied Mechanics, Vol. 56, pp. 56-77, 1989.
[22] B. D. Davidson and V. Sundararaman, “An Unsymmetric Double Cantilever Beam Test for Interfacial Fracture Toughness Determination,” Int. J. Solids Structures, Vol. 34, No. 7, pp. 799-817, 1997.
[23] B. D. Davidson and V. Sundararaman, “A Single Leg Test for interfacial fracture toughness determination,” International Journal of Fracture, Vol. 78, pp. 193-210, 1996.
[24] E. Suhir, “Predicted Failure Criterion (von-Mises stress) for Moisture-Sensitive Plastic Packages,” in Proc. 45th ECTC, pp. 266-284, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top