跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/08/02 14:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳宗暉
研究生(外文):Tsung-Hui Chen
論文名稱:溫度幅度變化對覆晶封裝溫度循環測試之影響
論文名稱(外文):The Effect of Temperature Range Variation on Flip-Chip Package under Temperature Cycling Test
指導教授:錢志回
指導教授(外文):Chi-Hui Chien
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:85
中文關鍵詞:溫度循環有限元素法覆晶封裝
外文關鍵詞:Flip-ChipTemperature CyclingFinite Element Method
相關次數:
  • 被引用被引用:3
  • 點閱點閱:107
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要

隨著近幾年半導體產業的發達,許多的元件都逐漸以小尺寸為結構,由於尺寸的縮小相對的造成線路密集化及線路直徑細小化,細小化的結果產生了許多問題如電磁干擾、高溫、熱應力等,因此半導體產品產生失效的機率隨之提升。在半導體產品中最常見的損害方式是經由熱疲勞所引起的破壞,熱疲勞是由反覆的溫度變化所引起的熱應力集中而造成疲勞效應。一般對於半導體產品的疲勞量測大都是以反覆的溫度循環實驗去造成破壞,本文則以有限元素套裝軟體來加以模擬分析,且於溫度循環實驗中一循環約需花80分鐘的時間,有著時間過長的缺點,因此本文使用不同的溫度幅度變化於溫度循環中,探討錫鉛凸塊於不同溫度負載條件下的塑性變化,以及不同溫度負載和等效塑性應變增量之關係,由等效塑性應變增量經Coffin-Manson關係式可以預測出錫鉛凸塊的疲勞壽命,以期由不同溫度負載和等效塑性應變增量之關係式能準確的加快疲勞測試速度。
Abstract

Accompany a rapid growth in the semiconductor industry in the past few year, most components gradually used the small dimension as its basic structures. Due to the reduction of component size will induces highly concentrated on circuit and dimension, it also incurs a lots problem, such as electromagnetic interference, high temperature and thermal stress, which will decrease the product reliability. The most common damage in the semiconductor product is thermal fatigue, which is caused by thermal stress concentrated under repeatedly temperature variation loading. Usually, the thermal cycle loading is applied to induce the fatigue destruction and predict the product reliability, but this method spends one cycle for 80min which is time-consumption. Therefore, in this thesis, the finite element method package is used to simulate and evaluate the plastic variation of solder bump and the relation between different temperatures loading and equivalent plastic strain under different temperature range test. Through the Coffin-Manson equation, the equivalent plastic strain can be used to predict the fatigue live, which can be precisely accelerating the fatigue test.
目錄

謝誌.......................................................Ⅰ
目錄.......................................................Ⅱ
圖目錄.....................................................Ⅳ
表目錄.....................................................Ⅶ
中文摘要...................................................Ⅷ
英文摘要...................................................Ⅸ


第一章、緒論.................................................1
1-1 前言..................................................1
1-2 文獻回顧..............................................3
1-3 研究目的..............................................7
1-4 組織與章節............................................8第二章、理論基礎............................................9
2-1 彈性應力應變之關係....................................9
2-2 應力應變與熱應變之關係...............................11
2-3 平面應變問題.........................................12
2-4 塑性應力應變之關係...................................14
2-5 潛變模型.............................................15
2-6 Bauschinger Effect....................................16
2-7 應變硬化模型.........................................18
2-8 黏彈性理論...........................................18
2-9 可靠度預測...........................................20
2-10降伏準則..........................................23
第三章、研究方法與步驟......................................29
3-1 簡介.................................................29
3-2 有限元素模型之建構...................................30
3-3 材料性質與邊界條件...................................30
3-4 ANSYS分析流程........................................32
3-5 收斂性分析...........................................34
第四章、結果與討論..........................................48
4-1 文獻比對之驗證.......................................48
4-2 加速熱循環模擬結果...................................50
4-3 錫鉛凸塊狀態分析.....................................52
4-4 錫鉛凸塊可靠度分析...................................53
4-5 溫度加速測試之比較...............................55
第五章、結論與未來展望......................................80
5-1 結論.................................................80
5-2 未來展望.............................................81
參考文獻...................................................82


圖目錄

圖2-1 平面應變問題之受力狀態...............................25
圖2-2 應力應變曲線圖.......................................25
圖2-3 應力應變曲線圖.......................................26
圖2-4 Isotropic應變硬化模型................................27
圖2-5 Kinematic應變硬化模型................................27
圖2-6 Isotropic應變硬化模型之應力-應變關係.................28
圖2-7 Kinematic應變硬化模型之應力-應變關係.................28
圖3-1(a) 覆晶構裝體下視圖..................................40
圖3-1(b) 覆晶構裝體上視圖..................................40
圖3-1(c) 覆晶構裝體右半邊剖面圖............................40
圖3-2 覆晶構裝體2D幾何模型.................................41
圖3-3 錫鉛凸塊幾何模型.....................................41
圖3-4 錫鉛凸塊使用BKIN時各溫度點之應力應變關係圖.........42
圖3-5 錫鉛凸塊楊氏係數與溫度之關係圖.......................42
圖3-6 錫鉛凸塊熱膨脹係數與溫度之關係圖.....................43
圖3-7 溫度循環曲線圖.......................................43
圖3-8 ANSYS模擬分析流程圖...................................44
圖3-9 二維八個節點的元素結構示意圖.........................45
圖3-10 最大等效應力與元素數目關係圖........................45
圖3-11 最大等效塑性應變與元素數目關係圖....................46
圖3-12 構裝體網格密度......................................46
圖3-13 錫鉛凸塊網格密度....................................47
圖4-1 溫度循環曲線圖.......................................61
圖4-2 等效塑性應變增量與循環次數之關係.....................61
圖4-3 最大等效塑性應變分佈圖...............................62
圖4-4 對稱中心及自由端之定義...............................62
圖4-5(a) 構裝體於高溫125 時之 方向位移分佈................63
圖4-5(b) 構裝體於低溫-40 時之 方向位移分佈................63
圖4-6(a) 構裝體於高溫125 時之 方向位移分佈................64
圖4-6(b) 構裝體於低溫-40 時之 方向位移分佈................64
圖4-7(a) 構裝體於高溫125 時之總位移分佈...................65
圖4-7(b) 構裝體於低溫-40 時之總位移分佈...................65
圖4-8 構裝體在 方向之應力分佈..............................66
圖4-9 構裝體在 方向之應力分佈..............................66
圖4-10 構裝體之等效應力分佈................................67
圖4-11 構裝體之等效應變分佈................................67
圖4-12(a) 錫鉛凸塊於高溫125 時之等效塑性應變分佈..........68
圖4-12(b) 錫鉛凸塊於低溫-40 時之等效塑性應變分佈..........68
圖4-13 錫鉛凸塊等效應力圖..................................69
圖4-14 最外顆錫鉛凸塊等效應力圖............................69
圖4-15 錫鉛凸塊等效塑性應變圖..............................70
圖4-16 錫鉛凸塊塑性應變能分佈圖............................70
圖4-17(a) 塑性應變能曲線圖(6 Cycle).........................71
圖4-17(b) 塑性應變能曲線圖(1 Cycle).........................71
圖4-18 等效塑性應變曲線圖..................................72
圖4-19 應力-應變曲線(2 Cycle)...............................72
圖4-20 應力-應變曲線(6 Cycle)...............................73
圖4-21 累積等效塑性應變....................................73
圖4-22 等效塑性應變增量與循環次數之關係....................74
圖4-23 均值溫度17.5 之塑性應變能..........................75
圖4-24 均值溫度42.5 之塑性應變能..........................75
圖4-25 均值溫度67.5 之塑性應變能..........................76
圖4-26 溫度幅度82.5 之塑性應變能..........................76
圖4-27 均值溫度17.5 之累積等效塑性應變....................77
圖4-28 均值溫度42.5 之累積等效塑性應變....................77
圖4-29 均值溫度67.5 之累積等效塑性應變....................78
圖4-30 溫度幅度82.5 之累積等效塑性應變....................78
圖4-31 溫度差與等效塑性應變增量之趨勢圖....................79


表目錄

表3-1 各元件的材料性質表...................................35
表3-2 隨溫度改變之錫鉛凸塊楊氏係數.........................35
表3-3 隨溫度改變之錫鉛凸塊熱膨脹係數(參考溫度76.85 )......36
表3-4 錫鉛凸塊之雙線性材料性質.............................36
表3-5 錫鉛凸塊之潛變材料性質...............................37
表3-6 液狀底部封膠的黏彈材料參數...........................37
表3-7 等效塑性應變增量與循環次數之關係.....................38
表3-8 溫度循環測試條件.....................................39
表4-1 實驗驗證材料參數表...................................57
表4-2 等效塑性應變增量與循環次數之關係.....................57
表4-3 累積等效塑性應變與熱負載數之關係.....................58
表4-4 等效塑性應變增量與循環次數之關係.....................58
表4-5 溫度變化與等效塑性應變增量之關係.....................59
表4-6 溫度循環測試條件.....................................60
表4-7 溫度變化與等效塑性應變增量之關係.....................60
參考文獻

[1] L. R. Fox, J. W. Sofia, M. C. Shine, “Investigation of Solder Fatigue Acceleration Factor”, IEEE Transactions on Components, Hybrids and Manufacturing Technology, Vol. Chmt-8, No. 2, pp.275-282, June 1985.
[2] R. V. Gestel, K. D. Zeeuw, L. V. Gemert, E. Bagerman, “Comparison of Delamination Effect between Temperature Cycling Test and Highly Accelerated Stress Test in Plastic Packaged Devices”, Delft University of Technology, pp.177-181, 1992.
[3] J. Sauber, L. Lee, S. Hsu, T. Hongsmatip, “Fracture Properties of Molding Compound Materials for IC Plastic Packaging”, Digital Equipment Corporation, pp.164-170, 1994.
[4] M. Guida, M. Giorgio, “Reliability Analysis of Accelerated Life-Test Data from a Repairable System”, IEEE Transactions on Reliability, Vol. 44, No. 2, pp.337-346, June 1995.
[5] R. Iannuzzelli, “The Reliability Nomograph–A Quick, Easy-to-use Graphical Predictor of Package/Module Interconnect Reliability”, Intersociety Conference on Thermal Phenomena, pp.89-99, 1996.
[6] B. K. Liew, N. W. Cheung, C. Hu, “Effects of High Current Pulses on Integrated Circuit Metallization Reliability”, 1998.
[7] P. Lall, K. Banerji, “Assembly-level Reliability Characterization of Chip-Scale Packages”, Electronic Components and Technology Conference, pp.482-494, 1998.
[8] H. Berek, V. Tiederie, T. Fritzsch, “New Methods in Accelerated Reliability Testing of Electronic Components for Automotives under Field Conditions”, IEEE/CPMT Electronics Manufacturing Technology Symposium, pp.143-146, 1998.
[9] Z. Qian, M. Lu, W. Ren, S. Liu, “Fatigue Life Prediction of Flip-Chips in Terms of Nonlinear Behaviors of Solder and Underfill”, Electronic Components and Technology Conference, pp.141-148, 1999.
[10] J. Kuang, S. Boggs, “Computation of Thermo-Chemical Phenomena Related to High Temperature HPFF Cable Operation”, IEEE Transactions on Power Delivery, Vol. 16, No. 4, pp.449-455, October 2001.
[11] J. H. L. Pang, K. H. Ang, X. Q. Shi, Z. P. Wang, “Mechanical Deflection System (MDS) Test and Methodology for PBGA Solder Joint Reliability”, IEEE Transactions on Advanced Packaging, Vol. 24, No. 4, pp.507-514, November 2001.
[12] A. Schubert, R.Doring, H. Walter, E. Auerswald, A. Gollhardt, B. Michel, “Thermo-mechanical Reliability of Lead-free Solder Interconnects”, 8th International Symposium on Advanced Packaging Materials, pp.90-96, 2002.
[13] J. Y. Deletage, F. J. M. Verdier, B. Plano, Y. Danto, “Reliability Estimation of BGA & CSP Assemblies Using Degradation Law Model and Technological Parameters Deviations”, Proceedings of 9th IPFA, 2002.
[14] P. Towashiraporn, G. Subbarayan, B.C. Hunter, D. Love, and B. Sullivan, ”The Effect of Model Building on the Accuracy of Fatigue Life Predictions in Electronic Packages”, Intersociety Conference on Thermal Phenomena, pp.854-861, 2002.
[15] W. Neher, W. Kempe, W. Wondrak, W. Saucr, “Finite Element Analysis to Develop a New Accelerating Test Method for Board Level Solder Joints for High Temperature Electronics”, Electronic Components and Technology Conference, pp.221-228, 2003.
[16] 王新榮, 陳時錦, 劉亞忠, “有限元素法及其應用”, 中央圖書出版社, 1997.
[17] Courtney, Thomas H., “Mechanical Behavior of Materials”, McGraw-Hill, N.Y., 1990.
[18] Wiese, A. Schubert, H. Walter, R. Dudek, F. Feustel, E. Meusel, B. Michel, “Constitutive Behavior of Lead-free Solders vs. Leadcontaining Solders-Experiments on Bulk Specimens and Flip Chip Joints”, IEEE Electronic Components and Technology Conference,2001.
[19] J. H. Lau, S.W. R. Lee, “Effects of Bulid-Up Circuit Board Thickness on The Solder Joint Reliability of a Wafer level Chip Scale Package (WLCSP)”, IEEE Transactions on Components and Packaging Technologies, Vol. 25, No.1, pp.3-14, March 2002.
[20] 王仁, 黃文彬, 黃筑平, “塑性力學引論”, 北京大學出版社, 1992.
[21] J. Wang, Z. Qian, S. Liu, “Process Induced Stress of a Flip-Chip Packaging by Sequential Processing Modeling Technique”, Journal of Electronic Packaging, Vol. 120, pp.309-313, September 1998.
[22] K.N. Chiang, Z.N. Liu, C.T. Peng, “Parametric Reliability Analysis of No-Underfill Flip Chip Package”, IEEE Transactions on Components and Packaging Technologies, Vol. 24, No. 4, pp.635-640, December 2001.
[23] J. A. Collins, “Failure of Materials in Mechanical Design:Analysis, Prediction, Prevention”, John Wiley & Sons, Inc., 1993.
[24] H. D. Solomon, “Fatigue of 60/40 Solder”, IEEE Transactions on Components, Hybrids and Manufacturing Technology, Vol. Chmt-9, No. 4, pp.423-432, December 1986.
[25] S. L. Chen, C. Z. Tsai, E. B. Wu, C. A. Shao, “A Study in The Effect by The Parameters of A Flip-Chip BGA”, Proceedings of The 18th National Conference on Mechanical Engineering, pp.359-366, 2001.
[26] ANSYS Structural Analysis Guide.
[27] Z. Cheng, L. Chen, G. Wang, X. Xie, Q. Zhang, ”The Effects of Underfill and Its Material Models on Thermomechanical Behaviors of Flip Chip Package”, International Symposium on Electronic Materials & Packaging, pp.232-239, 2000.
[28] D. E. Riemer, “Prediction of Temperature Cycling Life for SMT Solder Joints on TCE-Mismatched Substrates”, Electronic Components and Technology Conference, pp.418-425, 1990.
[29] B. A. Zahn, “Solder Joint Fatigue Life Model Methodology for 63Sn37Pb and 95.5Sn4Ag0.5Cu Materials”, Electronic Components and Technology Conference, pp.83-94, 2003.
[30] D. G. Yang, G. Q. Zhang, L. J. Ernst, C. V. Hof, J. F. J. Caers, H. J. L. Bressers, J. H. J. Janssen, “Investigation on Flip Chip Solder Joint Fatigue with Cure-Dependent Underfill Properties”, IEEE Transactions on Components and Packaging Technologies, Vol. 26, No. 2, pp.388-398, June 2003.
[31] 金重勛, “機械材料”, 復文書局, 1992.
[32]J. H. Lau, “Thermal Stress and Strain in Microelectronics Packaging”, Van Nostrand Reinhold, New York, 1993.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊