跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/24 12:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李秉鴻
研究生(外文):Bing-Hung Li
論文名稱:應用扭矩模態導波於管線檢測之實用性評估
論文名稱(外文):A practical appraisal for pipeline inspection using guided waves of torsional mode
指導教授:楊旭光楊旭光引用關係
指導教授(外文):Shiuh-Kuang Yang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:126
中文關鍵詞:管內流體導波法衰減包覆層材料
外文關鍵詞:pipe contentsattenuationcoating materialsguided wave
相關次數:
  • 被引用被引用:2
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本論文係針對T(0,1)扭矩模態導波於長距離管線檢測上之實用性評估,研究煉油石化廠上常見管線特徵之回波訊號特性,以及各種包覆層與管內流體等,造成導波傳遞衰減之參數,進行衰減率之計算,以作為導波法現場實際管線檢測時,提供可用檢測距離之參考資料。本文中利用一環狀陣列式的壓電探頭,於六吋測試管線上激發出T(0,1)扭矩模態導波。首先針對法蘭、焊道、支撐架、缺陷、彎管與補丁等特徵,探討其回波訊號在不同激發頻率下回波訊號之變化情形。再者,針對一般煉油、石化工廠所使用之管線包覆層,如PE布、柏油布及保溫材料等,進行這些包覆層材料對於T(0,1)扭矩模態導波在管線中傳遞之影響,用以評估導波法於包覆管線上檢測之性能。包覆層材料對於管線中導波波傳之影響,會與管線表面接觸之狀況有關。在所研究內容中,柏油布因其黏滯性大而造成導波之衰減也相對最大,PE布其次,保溫材則最小。最後,更進一步地探討管內流體對T(0,1)扭矩模態進行管線檢測之影響,實驗中,分別於管線注入不同管內流體如水、柴油、潤滑油以及燃料油時,觀察管線特徵法蘭回波訊號大小,並與測試管中為空氣時之法蘭回波訊號比較,以求得管內流體所造成之衰減率,結果顯示出黏滯性較大之燃料油所造成之衰減效果最嚴重,而水、柴油與潤滑油等低黏滯性流體對於T(0,1)扭矩模態影響甚小,以此結果更說明了T(0,1)扭矩模態於長距離管線檢測之優點。本論文評估結果可作為導波法現場實際管線檢測之參考資料。
Abstract
This thesis studies the practical appraisal for pipeline inspection using the guided wave T(0,1) mode. The characteristic of reflected signals from the features of pipeline for various coated materials and fluid-filled pipes are also evaluated. The attenuation and the traveling distance of the guided wave are then calculated from the above-mentioned data for pipeline inspection in petro-chemical industries. In the experimental setup, the torsional mode is excited at one axial location using an array of transducers distributed around the circumference of the 6-inch test pipe. The reflected signals from various features, such as flanges, welds, supports, bends, defects and patches are analyzed at first at specific frequencies in the experiments. The effect of various coated material such as bitumen, PE and insulated material are also evaluated for the propagating torsional mode T(0,1) in the pipe. The results show that the attenuation of reflected signal is heavy for the bitumen-coated case because its viscosity is much higher than the other cases. Furthermore, the effect of pipe contents for defect detection using T(0,1) mode is investigated in this thesis. Various pipe contents, such as water, diesel oil, lubricant and fuel oil are deposit into the test pipe, respectively, to evaluate the influence to T(0,1). For the attenuation evaluation of reflected signal from flange in pipe, the reflected signal from an air-content pipe is measured for reference to compare with the measurements of other pipe contents in the experiments. The results show that the low viscosity liquid deposit in the pipe, such as water, diesel oil and lubricant, has no effect on the torsional mode; while the high viscous of the fuel oil deposit in the pipe attenuates the reflected signal heavily. It became evident that the torsional mode T(0,1) is most suitable for use in fluid-filled pipeline inspection.
目錄
目錄 …………………………………………………………………………i
表目錄 ……………………………………………………………………iii
圖目錄 ……………………………………………………………………iv
中文摘要 ……………………………………………………………………ix
英文摘要 ………………………………………………………………………x
第一章 前言 ………………………………………………………………1
1.1研究主題 ……………………………………………………1
1.2研究背景 ……………………………………………………3
1.3 研究方法 ……………………………………………………6
第二章 基本理論……………………………………………………………8
2.1導波於圓管中傳遞之波動方程式………………………………8
2.1.1縱向模態…………………………………………………9
2.1.2扭矩模態…………………………………………………10
2.1.3撓曲模態…………………………………………………10
2.2頻散曲線………………………………………………………12
2.3波形結構………………………………………………………15
第三章 實驗架構與量測 …………………………………………………21
3.1導波法管線檢測系統……………………………………………21
3.1.1導波法檢測儀器設備……………………………………21
3.1.2導波法檢測步驟…………………………………………22
3.1.3導波法回波訊號判讀……………………………………23
3.2測試管件規格 ………………………………………………27
3.3實驗步驟 ……………………………………………………28
3.3.1管線特徵回波訊號判讀…………………………………28
3.3.2包覆層實驗 ……………………………………………29
3.3.3管內流體實驗 …………………………………………30
第四章 實驗結果與討論 …………………………………………………39
4.1管線特徵回波訊號判讀實驗結果………………………………39
4.2包覆層對導波衰減影響實驗結果 ……………………………42
4.3管內流體對導波衰減影響實驗結果 …………………………45
第五章 結論與建議 …………………………………………………………61
5.1結論 ……………………………………………………………61
5.2建議事項與未來展望…………………………………………63
參考文獻 ……………………………………………………………………64
附錄A:圓管中導波波傳解推導…………………………………………69
附錄B:實驗結果回波訊號圖……………………………………………92
參考文獻
1.M. J. Quarry, A Time Delay Comb Transducer for Guided Wave Mode Tuning in Piping, Ph.D Thesis, the Pennsylvania State University, May 2000.
2.J. A. McFadden, “Radial Vibrations of Thick-walled Hollow Cylinders,” Journal of the Acoustical Society of America, Vol. 26, pp. 714-715, 1954.
3.P. M. Naghdi and R. M. Cooper, “Propagation of Elastic Wave in Cylindrical Shells. Including the Effect of Transverse Shear and Rotatory Intertia,” Journal of the Acoustical Society of America, Vol. 28, pp. 56-63, 1956.
4.D. C. Gazis, “Three-dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. I. Analytical Foundation,” Journal of the Acoustical Society of America, Vol. 31, pp. 568-573, 1959.
5.D. C. Gazis, “Three-dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. II. Numerical Results,” Journal of the Acoustical Society of America, Vol. 31, pp. 573-578, 1959.
6.J. E. Greenspon, “Vibrations of Thick Cylindrical Shell,” Journal of the Acoustical Society of America, Vol. 31, pp. 1682-1683, 1958.
7.J. E. Greenspon, “Flexural Vibrations of Thick-walled Circular Cylinder According to the Exact Theory of Elasticity,” Journal of the Acoustical Society of America, Vol. 32, pp. 37-34, 1960.
8.J. E. Greenspon, “Vibrations of a Thick-walled Cylindrical Shell-comparison of the Exact Theory with Approximate Theories,” Journal of the Acoustical Society of America, Vol. 32, pp. 571-578, 1960.
9.A. H. Fitch, “Observation of Elastic-pulse Propagation in Axially Symmetric and Nonaxially Symmetric Longitudinal Modes of Hollow Cylinders,” Journal of the Acoustical Society of America, Vol. 35, pp. 706-708, 1963.
10.R. Kumar, “Axially Symmetric Vibrations of a Thin Cylindrical Elastic Shell Filled with Nonviscous, Compressible Fluid,” Acoustica, Vol. 17, pp. 218-222, 1966.
11.R. Kumar, “Dispersion of Axially Symmetric Waves in Empty and Fluid-filled Cylindrical Shells,” Acoustica, Vol. 17, pp. 317-329, 1972.
12.D. C. Worlton, “Ultrasonic Testing with Lamb Waves,” Non-destructive Testing, Vol. 15, pp. 218-222, 1957.
13.W. Mohr and P. Hoeller, “On Inspection of Thin-walled Tubes for Transverse and Longitudinal Flaws by Guided Ultrasonic Waves,” IEEE Transactions on Sonics and Ultrasonics, Vol. 23, pp. 369-374, 1976.
14.G. M. Light, W. D. Jolly and D. J. Reed, “Detection of Stress Corrosion Cracks in Reactor Pressure Vessel and Primary Coolant System Anchor Studs,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 3, pp. 811-818, 1984.
15.G. M. Light, N. R. Joshi and Soung-Nan Liu, “Cylindrically Guided Wave Technique for Inspection of Studs in Power Plants,” Materials Evaluation, pp. 494, Vol. 44, 1986.
16.W. Boettger, H. Schneider and W. Weingarten, “Prototype EMAT System for Tube Inspection with Guided Ultrasonic Waves”, Nuclear Engineering and Design, Vol. 102, pp. 369-376, 1987.
17.S. P. Pelts, D. Jiao and J. L. Rose, “A Comb Transducer for Guided Wave Generation and Mode Selection,” IEEE Conference, San Antonio, TX, November 3-6, 1996.
18.H. J. Shin and J. L. Rose, “Guided Wave Tuning Principles for Defect Detection in Tubing,” Journal of Nondestructive Evaluation, Vol. 17, No. 1, pp. 27-36, 1998.
19.J. L. Rose, S. Pelts and M. Quarry, “A Comb Transducer Model for Guided Wave NDE,” Ultrasonics, Vol. 36/1-5, pp. 163-168, February, 1998.
20.H. J. Shin and J. L. Rose, “Guided Waves by Axisymmetric and Non-Axisymmetric Surface Loading Hollow Cylinders,” Ultrasonics, Vol. 37, pp. 355-363, 1999.
21.J. Li and J. L. Rose, “Excitation and Propagation of Non-axisymmetric Guided Waves in a Hollow Cylinder,” Journal of the Acoustical Society of America, Vol. 109, No. 2, pp. 457-464, 2001.
22.J. Li and J. L. Rose, “Implementing Guided Wave Mode Control by Use of a Phased Transducer Array,” Ultrasonics, Ferroelectrics & Frequency Control, Vol. 48, No. 3, pp. 761-768, May, 2001.
23.D. N. Alleyne and P. Cawley, “A Two-dimensional Fourier Transform Method for the Measurement of Propagating Multimode Signals,” Journal of the Acoustical Society of America, Vol. 89, No. 3, pp. 1159-1168, 1991.
24.D. N. Alleyne and P. Cawley, “The Interaction of Lamb Waves with Defects,” IEEE Transactions on Ultrasonics Ferroelectics and Frequency Control, Vol. 39, pp. 381-396, 1992.
25.M. Castasing and P. Cawley, “The generation, Propagating, and Detection of Lamb Waves in Plates Using Air-coupled Ultrasonic Transducer,” Journal of the Acoustical Society of America, Vol. 100, No. 5, pp. 3070-3077, 1996.
26.P. Cawley and D. N. Alleyne, “The Use of Lamb Wave for the Long Range Inspection of Large Structures,” Ultrasonics, Vol. 34, pp. 287-290, 1996.
27.M. Lowe and O. Diligent, “Low-frequency Reflection Characteristics of The s0 Lamb Wave from a Rectangular in a Plate,” Journal of the Acoustical Society of America, Vol. 111, No. 1, Pt. 1, Jan., pp. 64-74, 2002.
28.O. Diligent, P. Cawley and M. Lowe, “The Low-frequency Reflection and Scattering of the s0 Lamb Mode from a Circular Through-thickness Hole in a Plate: Finite Element, Analytical and Experimental Studies,” J. Acoust. Soc. Am., Vol. 112, No. 6, December, pp. 2589-2601, 2002.
29.D. N. Alleyne, P. Cawley and M. Lowe, “The Long Range Detection of Corrosion in Pipes Using Lamb waves,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 14, pp. 2073-, 1995.
30.D. N. Alleyne, P. Cawley and M. Lowe, “The Inspection Chemical Plant Pipework Using Lamb Waves: Defect Sensitivity and Field Experience,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 15, pp. 1859, 1996.
31.M. Lowe, D. N. Alleyne and P. Cawley, “Defect Detection in Pipes Using Guided Waves,” Ultrasonics, Vol. 36, pp. 147-154, 1998.
32.D. N. Alleyne, P. Cawley and M. Lowe, “The Reflection of Guided Waves From Circumferential Notches in Pipes,” J. Appl. Mech., Vol. 65, pp. 635-641, 1998.
33.D. N. Alleyne, P. Cawley and M. J. S. Lowe, “The Mode Conversion of a Guided Wave by a Part-Circuferential Notch in a Pipe,” J. Appl. Mech., Vol. 65, pp. 649-656, 1998.
34.D. N. Alleyne and P. Cawley, “Long Range Propagation of Lamb Waves in Chemical Plant Pipework,” Materials Evaluation, Vol. 55, pp. 504-508, 1997.
35.A. Demma, P. Cawley, M. L. S. Lowe and A. G. Roosenbrand, “The Reflection of the Fundamental Torsional Mode from Cracks and Notches in Pipes,” J. Acoust. Soc. Am., Vol. 114, No. 2, August, pp. 611-625, 2003.
36.A. Demma, P. Cawley, M. J. S. Lowe, B. Pavlakovic and A. G.. Roosenbrand, “The Reflection of Guided Waves from Notches in Pipes : a Guide for Interpreting Corrosion Measurements,” NDT&E Int, Vol. 37, No. 3, pp.167-180, 2004.
37.H. Kwun and K. A., “Experimental Observation of Elastic-wave Dispersion in Bonded Solid of Various Configurations,” Journal of the Acoustical Society of America, Vol. 99, pp. 962-968, 1996.
38.J. L. Rose, Ultrasonic Waves in Solid Media, Cambridge University, 1999.
39.M. G. Silk and K. P. Bainton, “The Propagation in Metal Tubing of Ultrasonic Wave Modes Equivalent to Lamb Waves,” Ultrasonics, Vol. 17, pp. 11-19, 1979.
40.B. Pavlakovic, M. Lowe, D. N. Alleyne and P. Cawley, “DISPERSE: A General Purpose Program for Creating Dispersion Curve,” in Review of Progress in Quantitative Nondestructive Evaluation, edited by D. Thompson and D. Chimenti (Plenum, New York), Vol. 16, pp.185-192, 1997.
41.Wavemaker Pipe Screening System User Manual and Course Notes, UK, Guided Ultrasonics Ltd., 2001.
42.謝明夏,以導波法檢測管路中缺陷的研究,國立中山大學機械與機電工程研究所碩士論文,中華民國92年7月。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top