跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 07:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊聰明
研究生(外文):Cong-Ming Yang
論文名稱:常溫下之微金屬帽蓋封裝製程及其應力應變關係分析
論文名稱(外文):The Packaging Process of Metal Microcap under Room Temperature Status and Its Shear Stress-Strain Relationship Analysis
指導教授:錢志回潘正堂
指導教授(外文):Chi-Hui ChienCheng-Tang Pan
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:76
中文關鍵詞:金屬帽蓋常溫接合接合剪力強度
外文關鍵詞:room temperature bondingmetal microcapbonding shear strength
相關次數:
  • 被引用被引用:0
  • 點閱點閱:189
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
藉由新式的常溫接合方法來封裝微元件,此種接合方法可以在常溫下藉由微金屬帽蓋來封裝微元件,而此接合方式不僅可以提供微元件機械式的保護以外,更可以使其免於受到外界污染。此種常溫接合方式是傳統封裝所不能達到的,也是驅動今日改善晶圓級封裝的一個重大影響因素。利用ASTM標準試片規範作為巨觀標準用以評估比較微觀之鎳金屬帽蓋其界面剪應力、剪應變之關係及影響之因素。母模晶圓片在光刻之前必須先進行氧化作用層處理,而蝕刻的尺寸大小以及帽蓋和基板的接觸面積可以經由光罩設計以及掌握光阻曝光精度來加以控制。採取鈍化處理製程作為將金屬帽蓋於脫離母模時,能更容易的脫模。本篇論文中所採用的微電鑄製程技術相較於傳統的微精細加工方式而言不僅能更精確的製作微金屬帽蓋,此外微電鑄技術更能精確的控制帽蓋之電鑄厚度。藉由此電鑄技術所製作的微金屬帽蓋與微機械加工技術所製作的薄膜聚合矽而言,微電鑄技術製程優點多且品質較好。本篇論文中,利用玻璃材料作為基板的原因是玻璃透光的特性可用以執行紫外光膠著製程。此種膠著劑可以於室溫下進行膠著製程,而其膠著結果顯示出其具有極佳的接合強度。鈍化結果、電鑄沉積速率亦利用掃描電子顯微鏡(SEM)擷取結果加以分析。微金屬帽蓋和ASTM標準試片的剪應力、剪應變之關係,於此篇論文中亦作探討與分析。
A novel room temperature bonding method is used to package the micro-component. The bonding method utilizes metal microcap to package the micro-component under room temperature status, which not only can provide micro-component mechanical support also can prevent micro-component from contamination. The bonding condition under room temperature is the most conventional method can not achieve, which characteristic is the most significant effect factor to drive the wafer-level packaging process to improve in today. Utilizing ASTM standard, which was used as a macroscopic standard to evaluate and analyze the bonding shear strength relationship between the ASTM standard specimen and the metal microcap. The carrier wafer has been oxidized before photolithography process; the diameter of cavity and the contact area between the metal microcap and glass substrate were controlled by the photomask design and the accuracy of the photoresist exposure. The passivation treatment was developed to separate the microcap from the carrier wafer more easily. In this thesis, the metal microcap was fabricated by using electroforming process, which can control the thickness of metal microcap. The advantages of microcap are superior to the thin film poly-silicon made by the surface micromachining technique on the quality and mechanical properties. A glass is used as substrate of the metal microcap, and its transparent characteristic is a feature how we perform UV curing process. The adhesive can be cured under room temperature and the results exhibit the adhesive has excellent bonding strength. SEM is used to analyze the passivation result, the increasing rate of electroforming thickness. The shear stress-strain relationship between the metal microcap and the ASTM standard specimen is also discussed and analyzed in this thesis.
CONTENTS
CONTENTS…………………………………………………………Ⅰ
LIST OF TABLE…………………………………………………Ⅲ
LIST OF FIGURE…………………………………………………Ⅳ
ABSTRACT (In Chinese)……………………………………………Ⅶ
ABSTRACT (In English)………………………………………………Ⅸ

CHAPTERS page
1. INTRODUCTION…………………………………………………1
1.1 Motivation………………………………………………………1
1.2 Literature Review……………………………………………4

2. EXPERIMENTAL PROCEDURE……………………………………8
2.1 Fabrication of the metal microcap…………………………8
2.2 Pattern transfer…………………….…………………………9
2.3 Etching process………………………………………………11
2.4 Seed layer process……………………………………………12
2.5 Passivation treatment…………………………………………12
2.6 Micro-electro-deposition process…………………………13
2.7 ASTM standard experimental test……………………………15
2.8 The UV curable adhesives characteristic…………………16
2.9 Bonding and separating process……………………………18
2.10 The shear stress-strain test of metal microcap……18

3. RESULTS AND DISCUSSIONS……………….…………………27
3.1 Experimental results……………………………………27
3.2 Shear stress-strain test results…………………………31

4. CONCLUSIONS……………………………………………………54

REFERENCES……………………………………………………56

APPENDIX………………………………………………………60
REFERENCES
1.Zara, J. M. and Smith, S. W., Optical scanner using a MEMS actuator, IEEE, 2002
2.Mescher, M. J., Houston, K., Bernstein, J. J., Kirkos, G. A., Cheng, J. and Cross, L. E., P1-21: Novel MEMS microshell transducer array for high-resolution underwater acoustic imaging applications, IEEE, 2002
3.Shimbo, I. M., Furukawa, K., Fukuda, K. and Tanzawa, K., Silicon-to-silicon direct bonding method, Journal of Applied Physic, 1986
4.Albough, K. B. and Cade, P. E., Mechanism of anodic bonding of silicon to pyrex glass, IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Island, pp. 109–110, 1988
5.Wallis, G. and Pomerantz, D. I., Field-assisted glass-metal sealing, Journal of Applied Physic, pp. 3946–3949, 1969
6.Krause, P., Sporys, M., Obermeier, E., Lange, K. and Grigull, S., Silicon to silicon anodic bonding using evaporated glass, International Conference on Solid-State Sensors and Actuators, Stockholm, Sweden, Vol. 1, pp. 228–31, 1995
7.Ito, N., Yamada, K., Okada, H., Nishimura, M. and Kuriyama, T., A rapid and selective anodic bonding method, International Conference on Solid State Sensors and Actuators, Stockholm, Sweden, Vol. 1, pp. 277–80, 1995
8.Baltes, H., Brand, O. and Waelti, M., Packaging of CMOS MEMS, Microelectron Reliability, pp. 1255–1262, 2000
9.Field, L. A. and Muller, R. S., Fusing silicon wafers with low melting temperature glass, Sensors Actuators, pp. 935–938, 1990
10.Tong, Q. Y., Cha, G., Gafiteanu, R. and G¨osele V, Low temperature wafer direct bonding, IEEE, pp. 29–35, 1994
11.Quenzer, H. J. and Benecke, W., Low-temperature silicon wafer bonding, Sensors Actuators, pp. 340–344, 1992
12.Lee, A. P., Ciarlo, D. R., Krulevitch, P. A., Lehew, S., Trevino, J. and Northrup, M. A., A practical microgripper by fine alignment eutectic bonding and SMA actuation, International Conference on Solid-State Sensors and Actuators, Stockholm, Sweden, Vol. 2, pp. 368–371, 1995
13.Cohn, M. B., Liang, Y., Howe, R. T. and Pisano, A. P., Wafer-to-wafer transfer of microstructures for vacuum packaging, IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Island, pp. 32–35, 1996
14.Lin, L., MEMS post-packaging by localized heating and bonding, IEEE, pp. 608–616, 2000
15.Milanovi, V., Microrelays for batch transfer integration in RF systems, The 13th Int. Conf. on Micro Electro Mechanical Systems, pp. 787–792, 2000
16.Krauter, G., Schumacher, A. and Gosele, U., Low temperature silicon direct bonding for application in micromechanics: bonding energies combinations of oxides, Sensors Actuators, pp. 271–275, 1998
17.Putty, M. and Najafi, K., A micromachined vibrating ring gyroscope, IEEE, pp. 213–221, 1994
18.Sparks, D., Jordan, L. and Frazee, J., Flexible vacuum packaging method for resonating micromachines, Sensors Actuators, pp. 179–185, 1996
19.Sparks, D., Component integration and packaging of automotive Microsystems, Microsystem Symp, The Netherlands, pp. 37–45, 1998
20.Sparks, D., Jiang, G., Chilcott, D. and Kearney, M., Silicon micromachined motion sensor and method of making, U.S. Pat. 5831162, 1998
21.Maszara, W., Jiang, B. L., Yamada, A., Rozgonyi, G. A., Baumgart, H. and de Kock A J R, Role of surface morphology in wafer bonding, Journal of Applied Physic, pp. 257–265, 1991
22.Schmidt, M. A., Wafer-to-wafer bonding for microstructure formation, IEEE, pp. 1575–1585, 1998
23.Chen, J. Y., Huang, L. S., Chu, C. H. and Peizen, C., A new transferred ultra-thin silicon micropackaging, Micromechanical Microengineer, pp. 406–409, 2002
24.Shivkumar, B. and Kim, C. J., Microrivets for MEMS packaging: concept, fabrication, and strength testing, Micromechanical Microengineer, pp. 217–225, 1997
25.Mimiwaty, M. N., Badariah, B. and Burhanuddin, Y. M., The Effect of Temperature and KOH Concentration on Silicon Etching Rate and Membrane Surface Roughness, IEEE, pp. 524-528, 2002
26.Madou, M. J., Fundamentals of Microfabrication, The Science of Miniaturization, 2nd ed, New York CRC Press, 2002
27.Romankiw, L. T., Electrochemical Acta, pp. 2985, 1997
28.Yang, H. and Kang, S. W., International Journal of Machine Tools & Manufacture, pp. 1065, 2000
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top