跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/01 13:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:連哲緯
研究生(外文):Che-wei Lan
論文名稱:微流體塑膠晶片低溫接合技術之研發及其於微型混合器之應用
論文名稱(外文):The Low-Temperature Bonding Technique for Plastic-Based Microfluidic Chips and its Applications for Micromixers.
指導教授:趙健祥林哲信
指導教授(外文):Chien-Hsiang ChaoChe-Hsin Lin
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:93
中文關鍵詞:塑膠晶片接合微流體微型混合器
外文關鍵詞:plastic chipbonding techniquemicrofluidic devicesmicronixer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本篇研究的晶片製程是利用微熱壓技術以產生微流道塑膠元
件。將原本在玻璃母模上立體微流道結構壓印至塑膠基材上。由於所
使用的是便宜且可拋棄的高分子材料PMMA(Polymethyl
Methacrylate),玻璃母模將可重複地翻製塑膠元件。而其母模製程是
經由塑膠光罩圖形定義在鉻金屬上,使鉻金屬當蝕刻罩幕,接著利用
化學等向性蝕刻所製成。
本篇研究一種相較於傳統熱壓接合,低溫、低壓且省時的微流體
塑膠晶片接合技術,並將其技術應用在結合多管道的微流道晶片,以
其多管道結構製成微型混合器。而其混合效率與結果將由影像分析軟
體與模擬軟體,兩者相互比較及探討。
同時此技術的接合強度達3.8±0.31 Mpa(n=8),是傳統熱壓結合
130~153 Kpa的24倍,並且化學藥劑在PMMA表面僅產生約10 nm
的粗操度改變,所以對深度及寬度皆為50 μm以上的微流道而言,並
不會改變形狀。
Abstract
A new technique for bonding of polymer micro-fluidic devices has been developed. This method can easily bond biochips with complex flow patterns and metal layer. Above all, using a patterned glass, the micro-channel structures on Poly-Methyl Meth-Acrylate (PMMA) substrates were generated by one-step hot embossing procedure. In contrast with the traditional thermal bonding, this paper presents low-temperature and low-pressure packaging for polymer micro-fluidic platforms. Furthermore, the disposable plastic biochip has successfully been tested by the measurement of tensile strength and surface roughness.
This paper also reports details of the passive and active micro-mixers. According to experimental and numerical investigations, the mixing performance of passive micro-mixers is expectably to be found. In addition, to quantify the mixing concentration distribution in the micro-channel, it has been demonstrated by launching the image analysis programs. The bonding efficiency of the solvent is twenty four times as strong as thermal bonding efficiency.
目錄
誌謝………………………………….……...…………………………....I
目錄………………………….……………………………..……………II
表目錄…………………………………………………………………...V
圖目錄…………………………………………………………………..VI
中文摘要……………………………………………………………… IX
英文摘要………………………………………………………..………X

第一章、 導論
1-1 前言………………………………………………………………..1
1-2 微流體晶片………………………………………………………..2
1-3 塑膠晶片…………………………………………………………..3
1-4 研究目的與動機…………………………………………………..4
1-5 文獻回顧…………………………………………………………..5
1-5-1接合技術…………………………………………………………5
1-5-2 混合器…………………………………………………………..12
1.5.2.1 被動式…………………………………………………………12
1.5.2.2 主動式………………………………………………………….14
1.5.3 電解氣泡………………………………...……………………….17
1-6 研究架構…………………………………………………………..18

第二章、 晶片設計與原理
2-1 被動式混合晶片之設計…………………………………………..21
2-1-1 微流道尺寸設計原理…………………………………………...24
2-2 主動式混合晶片之設計…………………………………………..25
2-2-1 電解產生氣泡之原理…………………………………………...27
2-2-2 氣泡過慮器之原理……………………………………………...28

第三章、 實驗系統架設
3-1 熱壓機台…………………………………………………………..30
3-1-1 微熱壓成型技術………………………………………………...31
3-2 微型混合器………………………………………………………...33
3-2-1 被動式…………………………………………………………...33
3-2-2 主動式…………………………………………………………...34

第四章、 晶片製作與材料
4-1 鍍鉻的鈉玻璃母模之微影技術…………………………………...36
4-2 塑膠晶片之金屬薄膜濺鍍…………………………………...........40
4-2-1 定義塑膠晶片之電極…………………………………...............41
4-3 塑膠晶片之田口法熱壓成型參數設計…………………...............42
4-4 塑膠晶片之低溫化學接合………………….............…..................50

第五章、 實驗結果與分析
5-1 接合面的物理性質………………….............…..............................54
5-1-1 表面粗糙度………………….............…......................................54
5-1-2 接合強度………………….............…..........................................56
5-1-3 接合晶片的顯微觀察………………….............…......................58
5-1-4 最小可適用的微流道尺寸…………….............…......................60
5-2 微型混合器之模擬與測試…………….............…..........................61
5-2-1 被動式………………….............…..............................................62
5-2-2 主動式………………….............…..............................................68
5-2-2-1 過濾氣泡………………………………………………………68
5-2-2-2 電解氣泡………………………………………………………69

第六章、 結論與未來展望
6-1 結論………………….............…......................................................71
6-2 未來展望…………….............…......................................................72
參考文獻…………….............….............................................................73
自傳……………………………………………………………………..78
表目錄
表 1-1 各式接合法的比較表………………………………………..10
表 4-1 熱壓之玻璃母模的四點寬度 ………………………………44
表 4-2 熱壓實驗中各操作因子水準設計值………………………..44
表 4-3 熱壓實驗之實驗計畫及實驗數據…………………………..45
表 4-4 熱壓實驗的各因子對S/N比之反應表……………………..46
表 4-5 熱壓實驗的各因子對品質特性之反應表…………………..47
表 4-6 熱壓實驗的各因子的分類表………………………………..48
表 4-7塑膠熱壓成型中確認實驗及預測值之比較…………………50







圖目錄
圖1-1 被動式快速擴散分散孔………………………………………..13
圖 1-2 被動式側管道混合…………………………………………….13
圖 1-3 被動式立體摺疊混合………………………………………….14
圖1-4 流道底部條狀結構將造成垂直擾動現象……………………..14
圖1-5 超音波震盪混合 ………………………………………………15
圖 1-6 磁式攪拌器…………………………………………………….16
圖 1-7 包埋電極式 ………………………. ………………………….16
圖 1-8 不同相位電壓切換………………. …………………………...17
圖 1-9 加熱產生氣泡當作閥門 …………. ………………………….17
圖 2-1 等向性蝕刻示意圖 (a)原先設計、(b)蝕刻後………………..20
圖 2-2 被動式混合器示意圖……………. …………………………...22
圖 2-3 流道寬度不同的放大圖…………. …………………………...22
圖 2-4 T字型被動式混合器……………. ………………………….....23
圖 2-5 T字型被動式混合器局部放大圖. ………………………….....23
圖 2-6 被動式混合器理論示意圖………. …………………………...25
圖 2-7 電解產生氣泡示意圖……………. …………………………...26
圖 2-8 氣泡過濾器的尺寸示意圖………. …………………………...26
圖 2-9 氣泡自寬通道擠入窄通道的示意圖……………………….....28
圖 3-1 熱壓機示意圖……………………. …………………………..30
圖 3-2熱壓成型操作示意圖……………. …………………………...31
圖 3-3 玻璃母模的微熱壓成型示意圖…. …………………………..32
圖 3-4 被動式混合器操作示意圖………. …………………………...33
圖 3-5 主動式混合器操作示意圖………. …………………………...34
圖 3-6 (a)是氣泡剛開始產生時,(b)是施加Vave=3.3 V、100Hz 兩秒後。……………………. …………………………. …………..35
圖 4-1 塑膠微流體晶片製作流程示意圖………………. …………..37
圖 4-2 空白光罩示意圖………. …………………………. …………37
圖 4-3 玻璃母模製程示意圖…. …………………………. ………...38
圖 4-4 電極微影製程示意圖…. …………………………. …………41
圖 4-5 玻璃母模量測點示意圖. …………………………. …………43
圖 4-6 熱壓實驗的各因子對S/N比之反應圖…………. ………….46
圖 4-7 熱壓實驗的各因子對品質特性之反應圖………. ………….47
圖 4-8化學接合示意圖…………. …………………………. ………51
圖 4-9 化學接合後的結果 (一)…. …………………………. ……...53圖 4-9 化學接合後的結果 (二)…. …………………………. ……...53
圖 5-1 觀察化學藥劑對PMMA表面影響的SEM圖…. . …….......55
圖 5-2 各階段的PMMA表面粗糙度値. ……... . ……... . ……... . .56
圖 5-3 各式接合強度. ……... . ……... . ……... . . . ……... . ……... ..57
圖 5-4(a)化學接合的微管道剖面SEM圖 …... . . . ……... . ……... ..59
圖 5-4(b)熱壓接合的微管道剖面SEM圖…... . . . ……... . ……... …59
圖 5-4(c)兩種接合的微管道剖面SEM圖…... . . . ……... . ……... …60
圖 5-5 最小可適用的微管道. . ……... . ……... . . . ……... . ……... ...61
圖 5-6 被動式混合器觀察圖. . ……... . ……... . . . ……... . ……... ...62
圖 5-7 螢光濃度分佈圖(a)模擬部份與(b)實驗部份……... . ……... ..64
圖 5-8 • 為模擬濃度分佈;─為實驗的色度分析. ……... . ……... ..64
圖 5-9 當流量為0.16 ml/min時,模擬微流道內部壓力分佈圖…... 65
圖 5-10 T字型被動式混合器觀察圖... . ……... . . . ……... . ……... ...66
圖 5-11 流速為 8.125 cm/sec 時,(a)為模擬濃度分布與(b)為實驗濃度分布圖……………………. …………………………. …..67
圖 5-12 • 為模擬濃度分佈;─為實驗的色度分析…………. …….67
圖 5-13當流量為0.1 ml/min時,模擬微流道內部壓力分佈圖 ……68
圖 5-14 流速為3.45 m/sec ,氣泡過濾情形 ………………. …….69
圖 5-15 電解產生氣泡(3.3 V、100Hz)……………………………….70
圖 5-16 操作電壓為Vpp=750,100Hz,流量為0.02 ml/min(a)施加電
壓與流量前,(b)施加電壓與流量後………………. ………70
參考文獻
1. Z. Chen, Y. Gao, J. Lin, R. Su, Y. Xie, “Vacuum-assisted thermal bonding of plastic capillary electrophoresis microchip imprinted with stainless steel template”, Journal of Chromatography A, pp. 239-245 (2004).

2. A. Manz, N.Graber, H. M.Wimder, ”Miniaturized total chemical analysis systems:A novel concept for chemical sensing”, Sensors and Actuators, B, 1, pp. 244-248 (1990).

3. D. J. Harrison, K. Fluri, K. Seiler, Z. Fan, C. S. Effenhauser, A. Manz, ”Micromachining a Miniaturized Capillary Electrophoresis-Based Chemical Analysis System on a Chip”, Science, 261, pp. 895-897 (1993).

4. J. Wang, M. Pumera, M. P. Chatrathi, A. Escarpa1, R. Konrad, A. Griebel, W. Dorner, H. Lowe, ”Toward disposable lab-on-a-chip Poly(methylmethacrylate) microchip electrophoresis device with electrochemical detection”, Electrophoresis, 23, pp. 596–601 (2002).

5. C.H. Ahn, J. W. Choi, G. Beaucage, J. H. Nevin, J. B. Lee, A. Puntambekar, J. Y. Lee , “Disposable smart lab on a chip for point-of-care clinical diagnostics”, Proceedings of the IEEE, 92, pp. 154 – 173 (2004).

6. L. Martynova, L. E. Locascio, M. Gaitan, G. W. Kramer, R. G. Christensen, W. A. MacCrehan, “Fadrication of plastic microfluidic channels by imprinting methods”, Analytical Chemistry, 69, pp. 4783-4789 (1997).

7. J. Rossier, F. Reymond, P. E. Michel, “Polymer microfluidic chips for electrochemical and biochemical analyses”, Electrophoresis, 23, pp. 858–867 (2002).

8. S. Lai, X. Cao, L. J. Lee, “A Packaging Technique for Polymer Microfluidic Platforms”. Analytical Chemistry, 76, pp. 1175-1183 (2004).

9. H. Becker, C. Gartner, ”Polymer microfabrication methods for microfluidic analytical applications”, Electrophoresis, 21, pp. 12-26 (2000).

10. R. Miyake, S. J. Lammerink, M. Elwenspoek , K. J. Jan, “Micro mixer with fast diffusion”, ''An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems'', IEEE, pp. 248~253 (1993).

11. B. He, B. J. Burke, X. Zhang, R. Zhang, F. E. Regnier, “A Picoliter-Volume Mixer for Microfluidic Analytical Systems”, Analytical Chemistry, 73, pp. 1942-1947 (2001).

12. J. Branebjerg, P. Gravesen,J. P. Krog, C. R. Nielsen, “Fast mixing by lamination”, ''An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems'', IEEE, pp. 441-446 (1996).

13. A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A. Stone, G. M. Whitesides, “Chaotic Mixer for Microchannels”, Science, pp. 647-651 (2002).

14. V. Vivek, Y. Zeng,E. S. Kim, “Novel Acoustic-Wave Micromixer”, The Thirteenth Annual International Conference on , 23-27 Jan. 2000, IEEE, pp. 668-673 (2000).

15. L. H. Lu, K. S. Ryu, C. Liu, “A Magnetic Microstirrer and Array for Microfluidic Mixing”, Journal of Microelectromechanical systems, 11, pp. 462-469 (2002).

16. Y. K. Lee, J. Deval, P. Tabeling,C. M. Ho, “Chaotic mixing electrokinetically and pressure driven micro flows”, The 14 th IEEE Workshop on MEMS Interlaken, IEEE, pp. 483-486 (2001).

17. C. H. Lin,L. M. Fu,Y. S. Chien, ”Novel Microfluidic T-form Mixer Utilizing Switching Electroosmotic Flow”, A Proposed Paper Submitted to the Analytical Chemistry (2004).

18. A. A. Deshmukh, D. Liepmann, A. P. Pisano, “Continuous micromixer with pulsatile micropumps”, In Proceedings of the 2000 Solid-State Sensor and Actuator Workshop, Transducers Research Foundation, Cleveland OH, IEEE, pp. 73-76 (2000).

19. S. Z. Hua, F. Sachs, D. X. Yang, H. D. Chopra, “Microfluidic Actuation Using Electrochemically Generated Bubbles”, Analytical Chemistry,74, pp. 6392-6396 (2002).

20. J. H. Tsai, L. Lin, “Active microfluidic mixer and gas bubble filter driven by thermal bubble micropump”, Sensors and Actuators A , 97-98, pp. 665-671 (2002).

21. 丁志華, 戴寶通, “田口實驗計劃法簡介(I)”, 微毫米通訊, 第八卷 第三期, 民國九十年九月.

22. H. Nakanishi, T. Nishimoto, R. Nakamura, A. Yotsumoto, T. Yoshida, S. Shoji, “Studies on SiO–SiO bonding with hydrofluoric acid. Room temperature and low stress bonding technique for MEMS”, Sensors and Actuators A,79, pp. 237-244 (2000).

23. T. Ito, K. Sobue, S. Ohya, “Water glass bonding for micro-total analysis system”, Sensors and Actuators B, 81, pp. 187-195 (2001).

24. H. C. Ahn, J. W. Choi, G. Beaucage, J. H. Nevin, J. B. Lee, A. Puntambekar, J. Y. LEE, “Disposable Smart Lab on a Chip for Point-of-Care Clinical Diagnostics”, Proceedings of the IEEE, 92, pp. 154-173 (2004)

25.J. Voldman, L. M. Gray, M. A. Schmidt, “An Integrated Liquid Mixer/Valve”, Journal of Micromechanics and Microengineering, 9, pp. 295-302 (2000).

26. B. H. Jo, L. M. V. Lerberghe, K. M. Motsegood, D. J. Beebe, “Three-Dimensional Micro-Channel Fabrication in Polydimethylsiloxane (PDMS) Elastomer”, Journal of microelectromechanical systems, 9, pp. 76-81 (20000).

27. A. Han, K. W. Oh, S. Bhansali, H. T. Henderson, C. H. Ahn, “A low temperature biochemically compatible bonding technique using fluoropolymers for biochemical microfluidic systems”, MEMS 2000 IEEE, pp. 414-418 (2000).

28. S. Li, S. Chen, “Polydimethylsioxane Fluidic Interconnects for Microfluidic Systems”, IEEE transactions on advanced packing, 26, pp. 242-247 (2003).

29. A. Berthold, L. Nicola, P.M. Sarro, M.J. Vellekoop, “Glass-to-glass anodic bonding with standard IC technology thin films as intermediate layers”, Sensors and Actuators A, 82, pp. 224-228 (2000).

30. M. Stjernstr om, J. Roeraade, “Method for fabrication of microfluidic systems in glass”, Journal of Micromechanics and Microengineering., 8, pp.33-38 (1998).

31.R. T. Kelly, A. T. Woolley, “Thermal Bonding of Polymeric Capillary Electrophoresis Microdevices in Water”, Analytical Chemistry, 75, pp. 1941-1945 (2003).

32. Y. C. Su, L. Lin, “Localized plastic bonding for micro assemebly, packaging and liquid encapsulation”, IEEE, pp. 50-53 (2001).

33. F. Niklaus, P. Enoksson, P. Griss, E. Kälvesten, G. Stemme, ” Low-Temperature Wafer-Level Transfer Bonding”, Journal of microelectromechanical systems, 10, pp.525-531 (2001).

34. B. Grab, A. Neyer, M. JoÈhnck, D. Siepe, F. Eisenbeiû, G. Weber, R. HergenroÈder, “A new PMMA-microchip device for isotachophoresis with integrated conductivity detector”, Sensors and Actuators B, 72, pp. 249-258 (2001).

35. H. Becker, C. Gärtner, “Polymer microfabrication methods for microfluidic analytical applications”, Electrophoresis, 21, pp. 12-26 (2000).

36. J. H. Tsai, L. Lin, “Active microfluidic mixer and gas bubble filter driven by thermal bubble micropump”, Sensors and Actuators A, 97-98, pp. 665-671 (2002).

37. A. A. Daniel, A. S. Ashish, Z. H. Susan, “An electrolytically actuated micropump”, Review of Scientific Instruments, 75, pp. 915-920 (2004).

38. D. Erickson, D. Li, “Influence of Surface Heterogeneity on Electrokinetically Driven Microfluidic Mixing”, Langmuir, 18, pp. 1883-1892 (2002).

39. 楊重熙, “淺談微流體晶片在生物科技之應用”, 電子月刊, 第八卷第五期, pp. 90-95, 民國九十一年五月

40. 林群哲, 陳淑慧, “微全程分析(μ-TAS)生醫晶片系統”, 電子月刊, 第八卷第五期, pp. 96-109, 民國九十一年五月

41. 賴建芳, 林裕成, “微機電系統製程之接合技術”, 機械月刊, 第二十五卷第十一期, pp. 314-321, 民國八十八年十一月
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top