跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/27 13:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊堯年
研究生(外文):YAO-NIEN CHUANG
論文名稱:二維光子晶體帶隙之敏感度分析
論文名稱(外文):Sensitivity Analysis of Bandgaps for 2-D Photonic Crystals
指導教授:趙健祥
指導教授(外文):Chien-Hsiang Chao
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:84
中文關鍵詞:帶隙光子晶體
外文關鍵詞:bandgap
相關次數:
  • 被引用被引用:0
  • 點閱點閱:97
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來光子晶體吸引了大家的注意,主要原因就是其具有光子頻帶結構,與電子能隙結構相當類似,而在光子帶隙中電磁波無法通過。利用光子晶體可以發展出許多光通訊元件,並且較傳統光元件性能優異,因此目前在製造方面之研究也大有人在。
本篇論文針對當光子晶體因製作過程中出現誤差,導致介電材質之形狀與尺寸產生偏差時,對其帶隙產生的影響進行模擬,並且與原設計系統之帶隙進行比對。主要是考量二維正方形、三角形及蜂巢形晶格結構,而介電柱形狀則為圓柱與方柱,分別對兩種不同之介電柱結構,介電常數分別為8.9和11.4,在圓柱半徑與方柱邊長以及形狀具有誤差下之狀況進行模擬分析。並且在介電質圓柱正方形晶格排列、介電質圓柱三角形晶格排列與介電質方柱三角形晶格排列之TM模態帶隙中出現與原設計系統不同之結果。
Periodic dielectric structures, which are called photonic crystals or photonic lattices, have attracted many interests in recent years. The existence of band gaps, which prohibits the propagation of electromagnetic waves in any direction, provides an opportunity to confine and control the propagation of electromagnetic waves.
This study aims at the influence of photonic band gaps which are brought by the errors because of the procedures of manufacturing. It is simulated that the crystal structures of 2-D square, triangular and honeycomb lattice, and the dielectric rods of circular and square whose size and form are little different from original design system. Consequently, it is found that the band gaps of 2-D photonic square lattice composed of cylinders, and triangular lattice composed of cylinders or square rods are different from original design system.
目錄.....................................................Ⅰ
表目錄...................................................Ⅳ
圖目錄...................................................Ⅶ
中文摘要.................................................Ⅹ
英文摘要................................................ⅩⅠ

第一章 序論............................................1

1.1. 光子晶體簡介....................................1
1.2. 研究目的........................................3
1.3. 文獻回顧........................................3
1.4. 論文結構........................................5

第二章 光子晶體理論基礎與對稱性..................6

2.1. 光子晶體理論基礎................................6
2.1.1. Maxwell方程式............................6
2.1.2. 晶格結構................................8
2.1.3. 布里淵區................................10
2.1.4. 光子晶體對稱性..........................13
2.1.5. 光子晶體的縮尺定律......................14
2.2. 二維光子晶體頻域分析...........................15
2.2.1. Bloch 理論..............................15
2.2.2. TE Mode.................................17
2.2.3. TM Mode.................................19
2.2.4. 介電質函數之求法........................20
2.3. 光子晶體對稱性分析.............................22
2.3.1. 二維正方形晶格結構......................22
2.3.2. 二維三角形晶格結構......................29
2.3.3. 對稱性分類之應用........................33

第三章 模擬結果......................................44

3.1. 介電質圓柱正方形排列............................44
3.2. 介電質圓柱正方形排列............................49
3.3. 介電質圓柱三角形排列............................54
3.4. 介電質方柱三角形排列...........................59
3.5. 介電質圓柱蜂巢形排列...........................64
3.6. 介電質方柱蜂巢形排列...........................70

第四章 結論與未來展望..............................78

4.1. 結論...........................................78
4.2. 未來展望.......................................81

參考文獻..................................................82









表目錄

表2-1 不同晶格排列之基底向量..............................11
表2-2 圓柱與方柱之 ......................................22
表2-3 之特徵標表.......................................23
表2-4 之特徵標表.......................................24
表2-5 之特徵標表.......................................24
表2-6 E與A模態在Γ、Δ點之對稱操作......................25
表2-7 二維正方形晶格 、 、 點對應 和 之模態...........26
表2-8 二維正方形晶格之最低三個 點之特徵標表示............27
表2-9 B1模態於 點出現之求解.............................27
表2-10 不同之 、 、 點所對應之膜態表示..................28
表2-11 之特徵標表.......................................31
表2-12 之特徵標表.......................................31
表2-13 二維三角形晶格 、 、 點對應 和 之模態..........32
表2-14 不同之 、 、 點所對應之膜態表示..................32
表2-15 蛋白石結構之布里淵區各點點群........................39
表3-1 介電質圓柱正方形排列誤差1%之TM模態模擬數值.........44
表3-2 介電質圓柱正方形排列誤差3%之TM模態模擬數值.........46
表3-3 介電質圓柱正方形排列誤差5%之TM模態模擬數值.........46
表3-4 介電質圓柱正方形排列誤差1%之TM模態模擬數值.........47
表3-5 介電質圓柱正方形排列誤差3%之TM模態模擬數值.........48
表3-6 介電質圓柱正方形排列誤差5%之TM模態模擬數值.........48
表3-7 介電質方柱正方形排列誤差1%之TM模擬數值.............50
表3-8 介電質方柱正方形排列誤差3%之TM模擬數值.............51
表3-9 介電質方柱正方形排列誤差5%之TM模擬數值.............51
表3-10 介電質方柱正方形排列誤差1%之TM模擬數值.............52
表3-11 介電質方柱正方形排列誤差3%之TM模擬數值.............53
表3-12 介電質方柱正方形排列誤差5%之TM模擬數值.............53
表3-13 介電質圓柱三角形排列誤差1%之TM模擬數值.............55
表3-14 介電質圓柱三角形排列誤差3%之TM模擬數值.............56
表3-15 介電質圓柱三角形排列誤差5%之TM模擬數值.............56
表3-16 介電質圓柱三角形排列誤差1%之TM模擬數值.............57
表3-17 介電質圓柱三角形排列誤差3%之TM模擬數值.............58
表3-18 介電質圓柱三角形排列誤差5%之TM模擬數值.............58
表3-19 介電質方柱三角形排列誤差1%之TM模擬數值.............60
表3-20 介電質方柱三角形排列誤差3%之TM模擬數值.............61
表3-21 介電質方柱三角形排列誤差5%之TM模擬數值.............61
表3-22 介電質方柱三角形排列誤差1%之TM模擬數值............62
表3-23 介電質方柱三角形排列誤差3%之TM模擬數值............63
表3-24 介電質方柱三角形排列誤差5%之TM模擬數值............63
表3-25介電質圓柱蜂巢形排列誤差5%內之TE模擬數值...........65
表3-26介電質圓柱蜂巢形排列誤差5%內之TM模擬數值...........66
表3-27 介電質圓柱蜂巢形排列誤差5%內之TE模擬數值..........68
表3-28介電質圓柱蜂巢形排列誤差5內%之TM模擬數值..........69
表3-29介電質方柱蜂巢形排列誤差5%內之TE模擬數值...........71
表3-30介電質方柱蜂巢形排列誤差5%內之TM模擬數值...........72
表3-31介電質方柱蜂巢形排列誤差5%內之TE模擬數值...........74
表3-32介電質方柱蜂巢形排列誤差5%內之TM模擬數值.........75-76
表4-1原設計系統(介電係數8.9)與誤差系統帶隙比對表...........79
表4-2原設計系統(介電係數11.4)與誤差系統帶隙比對表..........80






圖目錄

圖1-1 光子晶體示意圖.....................................2
圖2-1 二維的布拉維晶格示意圖.............................9
圖2-2 正方形晶格與倒晶格................................12
圖2-3 三角形晶格與倒晶格................................12
圖2-4 二維正方形晶格所具有之對稱性......................14
圖2-5 TE Mode示意圖.....................................18
圖2-6 TM Mode示意圖.....................................20
圖2-7 二維正方形晶格之第一布理淵區.......................23
圖2-8 二維正方形晶格於倒晶格空間中之延展.................26
圖2-9 二維正方形晶格TM Mode频帶關係圖...................29
圖2-10 三角形晶格所具有之對稱性..........................30
圖2-11 二維三角形晶格之第一布里淵區......................31
圖2-12 二維三角形晶格TM Mode频帶關係圖..................33
圖2-13 二維光子晶體COMITS實驗與理論比較圖...............34
圖2-14 電場平行介電柱之最低四能帶鏡射圖..................35
圖2-15 二維三角形晶格能帶與反射比圖......................37
圖2-16 二維三角形晶格能帶與反射比圖......................37
圖2-17 蛋白石結構之布里淵...............................38
圖2-18 三角形晶格具有一個缺陷柱之六種缺陷模態...........40
圖2-19 週期性擾動示意圖.................................41
圖2-20 具有兩種不同介電材質之E極化能帶圖...............42
圖2-21 週期性擾動示意圖.................................43
圖3-1 介電質圓柱正方形排列示意圖.......................45
圖3-2 介電係數8.9,誤差5%內樣本點TM帶隙..............47
圖3-3 介電係數11.4,誤差5%內樣本點TM帶隙.............49
圖3-4 介電質圓柱正方形排列示意圖.......................50
圖3-5 介電係數8.9,誤差5%內樣本點TM帶隙..............52
圖3-6 介電係數11.4,誤差5%內樣本點TM帶隙.............54
圖3-7 介電質圓柱三角形排列示意圖.......................55
圖3-8 介電係數8.9,誤差5%內樣本點TM帶隙..............57
圖3-9 介電係數11.4,誤差5%內樣本點TM帶隙.............59
圖3-10 介電質方柱三角形排列示意圖.......................60
圖3-11 介電係數8.9,誤差5%內樣本點TM帶隙..............62
圖3-12 介電係數11.4,誤差5%內樣本點TM帶隙.............64
圖3-13 介電質圓柱蜂巢形排列示意圖.......................65
圖3-14 介電係數8.9,誤差5%內樣本點TE帶隙..............67
圖3-15 介電係數8.9,誤差5%內樣本點TM帶隙...............67
圖3-16 介電係數11.4,誤差5%內樣本點TE帶隙..............70
圖3-17 介電係數11.4,誤差5%內樣本點TM帶隙..............70
圖3-18 介電質方柱蜂巢形排列示意圖........................71
圖3-19 介電係數8.9,誤差5%內樣本點TE帶隙...............73
圖3-20 介電係數8.9,誤差5%內樣本點TM帶隙...............73
圖3-21 介電係數11.4,誤差5%內樣本點TE帶隙..............76
圖3-22 介電係數11.4,誤差5%內樣本點TM帶隙..............77
[1] E.Yablonovitch , “Inhibited Spontaneous Emission in Solid-State
Physics and Electronics” ,Phys. Rev. Lett. 58 , 2059 (1987)
[2] S. John , “Strong Localization of Photons in Certain Disordered Dielectric Superlattices” ,Phys. Rev. Lett. 58 , 2486 (1987)
[3] John D.Joannopoulos , “ Photonic Crystals ” , Princeton University Press , 1995
[4] S. Satpathy, Ze Zhang, and M. R. Salehpour ,” Theory of Photon Bands in Three-Dimensional Periodic Dielectric Structures”, Phys. Rev. Lett. 64, 1239(1990)
[5] Pierre R. Villeneuve and Michel Piché,” Photonic Band Gaps in Two-Dimensional Square and Hexagonal Lattices”, Phys. Rev. B 46, 4969(1992)
[6] R. D. Meade, A. M. Rappe, and J. D. Joannopoulos,” Accurate Theoretical Analysis of Photonic Band-Gap Materials”, Phys. Rev. B 48, 8434(1993)
[7] . E. Mooij, and B. J. van Wees, “Unbinding of Charge-Anticharge Pairs in Two-Dimensional Arrays of Small Tunnel Junctions”, Phys. Rev. Lett. 65, 645(1990)
[8] Smirnova,and Temkin,”Simulation of Photonic Band Gaps in Metal Rod Lattices for Microwave Applications”,Journal of Applied Physics 91,p.960(2002)
[9] Hermann,and Frank, “Photonic Band Structure Computations ”,Optics Express 167,p167(2001)
[10] J. B. Pendry and A. MacKinnon,” Calculation of photon dispersion relations”, Phys. Rev. Lett. 69, 2772(1992)
[11] K. M. Ho, and C. M. Soukoulis,” Metallic Photonic Band-Gap Materials”, Phys. Rev. B 52, 11744(1995)
[12] C. T. Chan, Q. L. Yu, and K. M. Ho,” Order-N Spectral Method for Electromagnetic Waves”, Phys. Rev. B 51, 16635(1995)
[13] A. J. Ward and J. B. Pendry,” Calculating Photonic Green''s Functions Using a Nonorthogonal Finite-Difference Time-Domain method”, Phys. Rev. B 58, 7252(1998)



[14] Kazuaki Sakoda, Noriko Kawai, and Takunori Ito,” Photonic Bands of Metallic Systems. I. Principle of Calculation and Accuracy”, Phys. Rev. B 64, 045116 (2001)
[15] L. C. Botten,and N. A. Nicorovici,” Photonic Band Structure Calculations Using Scattering Matrices” , Phys. Rev. E 64, 046603 (2001)
[16] 韓其智,孫洪洲,“ 群論“,格致圖書有限公司,1989
[17] 馬中騏,“ 物理學中的群論“,科學出版社,1998
[18] C.M.Soukoulis , “ Photonic Band Gaps and Localization “ , Plenum Press , New York ,1993
[19] Kazuaki Sakoda , “Symmetry, Degeneracy, and Uncoupled Modes in Two-Dimensional Photonic Lattices“,Phys. Rev. B 52 , 7982 (1995)
[20] K. Sakoda , and T. Ochiai , “Symmetry Characterization of Eigenstates in Opal-Based Photonic Crystals”,Phys. Rev. B 65 , 195110 (2002)
[21] Kazuo Ohtaka, Tsuyoshi Ueta, and Katsuki Amemiya,“Calculation of photonic bands using vector cylindrical waves and reflectivity of light for an array of dielectric rods“ ,Phys. Rev. B 57, 2550 (1998)
[22] A. Modinos, N. Stefanou, and V. L. Yannopapas, " Applications of the layer-KKR method to photonic crystals " Opt. Express 8, 197 (2001)
[23] Vladimir Kuzmiak , and Alexei A. Maradudin , “Symmetry Analysis of the Localized Modes Associated with Substitutional and Interstitial Defects in a Two-Dimensional Triangular Photonic Crystal”,Phys. Rev. B 61 , 10750 (2000)
[24] N. Malkova , S. Kim , and V. Gopalan , “Symmetrical Perturbation Analysis of Complex Two-Dimensional Photonic Crystals”,
Phys. Rev. B 66 , 115113 (2002)
[25] N. Malkova , S. Kim , and V. Gopalan , “Symmetrical Analysis of Complex Two-Dimensional Hexagonal Photonic Crystals”,Phys. Rev. B 67 , 125203 (2003)
[26] Se-Heon Kim; Yong-Hee Lee “Symmetry relations of two-dimensional photonic crystal cavity modes”, IEEE Journal of Quantum Electronics, 1018(2003)
[27] C.Kittle , “ Introduction to Solid State Physics “ , John Wiley
& Sons , New York , (1996)


[28] W. M. Robertson , and G Arjavalingam , “Measurement of Photonic
Band Structure in a Two-Dimensional Periodic Dielectric Array”
,Phys. Rev. Lett. 68 , 2023 (1992)
[29] D. Cassagne , C. Jouanin , and D. Bertho , “Hexagonal
Photonic-Band-Gap Structures”,Phys. Rev. B 53 , 7134–7142 (1996)
[30] Kazuaki Sakoda , “ Optical Properties of Photonic Crystals “ ,
Springer-Verlag , (2001)
[31] Steven G. Johnson and J. D. Joannopoulos, "Block-Iterative
Frequency-Domain Methods for Maxwell''s Equations in a Planewave
Basis," Optics Express 8, no. 3, 173-190 (2001).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top