# 臺灣博碩士論文加值系統

(3.235.60.144) 您好！臺灣時間：2021/07/27 00:24

:::

### 詳目顯示

:

• 被引用:0
• 點閱:275
• 評分:
• 下載:33
• 書目收藏:0
 分佈刻劃數十年來一直是統計理論的一門重要課題。雖然已經有許多大家熟悉的結果，對於在應用上扮演重要角色的分佈，例如常態及gamma，新的刻劃結果依然相當具有吸引力。在實際應用上，有時我們會猜測觀測到的資料究竟服從什麼分佈，有時會利用刻劃上的特性去推測分佈。本文我們將先探討gamma分佈及利用刻劃上的特性所做的參數估計方法。其次，我們利用電腦模擬來進行一些分析研究。
 Characterization of distributions has been an important topic in statistical theory for decades. Although there have been many well known results already developed, it is still of great interest to find new characterizations of commonly used distributions in application, such as normal or gamma distribution. In practice, sometimes we make guesses on the distribution to be fitted to the data observed, sometimes we use the characteristic properties of those distributions to do so. In this paper we will restrict our attention to the characterizations of gamma distribution as well as some related studies on the corresponding parameter estimation based on the characterization properties. Some simulation studies are also given.
 Chapter 1: Introduction and ReviewChapter 2: Characterizations of the Gamma Distribution via Conditional MomentsChapter 3: Characterizations of the Bivariate Gamma distributionChapter 4: Characterizations of the Gamma and Generalized Inverse Gaussian distributionsChapter 5: Characterizations of the Gamma Distribution via Conditional ExpectationsChapter 6: On Parameter Estimation of two Independent Gamma Population With the Same Scale ParameterChapter 7: Conclusion
 item[]Alzaid, A.A., Al-Osh, M.A. 1991. Characterizations ofprobability distributions based on the relation \$Xstackrel{md}{=}U(X_{1}+X_{2}).\$ extit{Sankhy={a} B} extbf{53}, 188-190.item[]Andersen, P.K., Gill, R.D. 1982. Cox''s regression model for counting processes:a large sample study. extit{Ann. Stat.} extbf{10}, 1100-1120.item[]Bar-Lev, S.K., Bshouty, D., Enis, P., Letac, G., Lu, I. , andRichards, D. 1994. The diagonal multivariate natural exponentialfamilies and their classification. extit{J. Theor. Prob.}extbf{4}, 883-929.item[]Bobecka, K. 2002. Regression versions of Lukacs typecharacterizations for the bivariate gamma distribution.extit{J. Appl. Stat. Sci.} extbf{11}, 213-233.item[]Bobecka, K., Wesolowski, J.2002a. Three dual regression schemes for the Lukacs theorem.extit{Metrika} extbf{56}, 55-72.item[]Bobecka, K., Wesolowski, J. 2002b. TheLukacs-Olkin-Rubin theorem without invariance of the "quotient".extit{Studia Math.} extbf{152}, 147-160.item[]Bolger, E.M., Harkness, W. L.1965. A characterization of some distributions by conditionalmoments. extit{Ann. Math. Stat.} extbf{36}, 703-705.item[]Casalis , M.,Letac, G. 1996. The Lukacs-Olkin-Rubin characterization ofWishart distributions on symmetric cones. extit{Ann. Stat.}extbf{24}, 763-786.item[]Chhikara, R.S., Folks, J.L. 1989. extit{The InverseGaussian Distribution: Theory, Methodology and Applications.}Marcel Dekker Inc., New York.item[]Chung, K.L. 2001. extit{A course in probability theory},3rd ed. Academic Press.item[]Cox , D.R. 1972. Regression models and life tables (with discussion).extit{J. Roy. Stat. Soc. B} extbf{34}, 187-220.item[]Hall, W.J., Simons, G. 1969. On characterizations of thegamma distribution. extit{Sankhy={a} A} extbf{31}, 385-390.item[]Huang, W.J., Chen, L.S. 1989. Note on a characterizationof gamma distributions. extit{Stat. Prob. Lett.} extbf{8},485-487.item[]Huang, W.J., Chen, L.S. 1991. On a study of certain powermixtures. extit{Chinese J. Math.} extbf{19}, 95-104.item[]Huang, W.J., Su, J.C. 1997. On a study of renewal processconnected with certain conditional moments. extit{Sankhy={a}A} extbf{59}, 28-41.item[]Hwang, T.Y., Hu, C.Y. 1999. On a characterization of the Gammadistribution: the independence of the sample mean and the samplecoefficient of variation. extit{Ann. Inst. Stat. Math.}extbf{51}, 749-753.item[]Hwang, T.Y., Hu, C.Y. 2000. On some characterizations ofpopulation distributions. extit{Taiwanese J. Math.} extbf{4},427-437.item[]Hwang, T.Y., Huang, P.H. 2002. On new moment estimation ofparameters of gamma distribution using it''s characterization.extit{Ann. Inst. Stat. Math.} extbf{54}, 840-847.item[]Johnson, N.L., Kotz, S. 1994. extit{Distributions in Statistics:Continuous Univariate Distributions} I, 2nd edition. John Wiley& Sons, New York.item[]Kagan, A.M., Linnik, Y.V., Rao, C.R. 1973. extit{Characterizationproblems in mathematical statistics.} Wiley, New York (translatedby B. Ramachandran).item[]Laha, R.G. 1964. On a problem connected with beta and gammadistributions, extit{Transactions of American MathematicalSociety} extbf{113}, 287-298.item[]Letac, G., Massam, H. 1998. Quadratic and inverse regressionsfor Wishart distributions. extit{Ann. Stat.}extbf{26}, 573-595.item[]Letac, G., Wesolowski, J. 2000. An independence property for theproduct of GIG and gamma laws. extit{Ann. Prob.}extbf{28}, 1371-1383.item[]Li, S.H., Huang, W.J., Huang, M.N.L. 1994. Characterizationsof the Poisson process as a renewal process via two conditionalmoments. extit{Ann. Inst. Stat. Math.} extbf{46}, 351-360.item[]Lukacs, E. 1955. A characterization of the gamma distribution.extit{Ann. Math. Stat.} extbf{26}, 319-324.item[]Matsumoto, H., Yor, M. 2003. Interpretation via Brownian motionof some independence properties between GIG and gamma variables.extit{Stat. Prob. Lett.} extbf{61}, 253-259.item[]Olkin, I., Rubin, H. 1962. A characterization of the Wishartdistributions. extit{Ann. Math. Stat.} extbf{33}, 1272-1280.item[]Pakes, A.G. 1992a. A characterization of gamma mixtures ofstable laws motivated by limit theorems. extit{StatisticaNeerlandica} extbf{2-3}, 209-218.item[]Pakes, A.G. 1992b. On characterizations through mixed sums.extit{Austral. J. Stat.} extbf{34}, 323-339.item[]Pakes, A.G., Khattree, R. 1992. Length-biasing,characterizations of laws and the moment problem.extit{Austral. J. Stat.} extbf{34}, 307-322.item[]Pakes, A.G. 1994. Necessary conditions for characterization oflaws via mixed sums. extit{Ann. Inst. Stat. Math.}extbf{46}, 797-802.item[]Patil, G.P., Seshadri, V. 1964. Characterization theorems forsome univariate probability distributions. extit{J. Roy. Stat.Soc. B} extbf{26}, 286-292.item[]Pusz, J. 1997. Regressional characterization of the generalizedinverse Gaussian population. extit{Ann. Inst. Stat. Math.}extbf{49}, 315-319.item[]Pusz, J. 2002. Some extensions on the bivariate populations ofthe Laha-Lukacs characterizations. extit{Technical report,Wydzial Matematyki I Nauk Informacyjnych, Politechnika Warszawska,Warszawa, Poland.}item[] Redheffer, R.M. 1992 extit{Introduction toDifferential Equations.} Jones and Bartlett Publishers, Inc.Boston.item[]Roussas, G.G. 1997. extit{A Course in MathematicalStatistics,} 2nd edition. Academic Press, New York.item[]Seshadri, V. 1999. extit{The Inverse Gaussian Distribution,Statistical Theory and Applications.} Springer-Verlag Inc., NewYork.item[]Seshadri, V., Wesolowski, J. 2001. Mutual characterizations ofthe gamma and generalized inverse Gaussian laws by constancy ofregression. extit{Sankhy={a} A} extbf{63}, 107-112.item[]Seshadri, V., Wesolowski, J. 2003. Constancy of regressions forbeta distributions. extit{Sankhy={a}} extbf{65}, 284-291.item[]Shih, J.H., Louis, T.A. 1995. Inference on the association parameterin copula models for bivariate survival data. extit{Biometrics}extbf{51}, 1384-1399.item[]Tweedie, M.C.K. 1945. Inverse statistical variates. extit{Nature}extbf{155}, 453-453.item[]Wang, Y.H. 1981. extit{Extensions of Lukacs'' characterization of thegamma distribution. In: Analytical Methods in Probability Theory,Lecture Notes in Mathematics} extbf{861}, Springer, New York,166-177.item[]Wesolowski, J. 1989. A characterization of the gamma process byconditional moments. extit{Metrika} extbf{36}, 299-309.item[]Wesolowski, J. 1990. A constant regression characterization ofthe gamma law. extit{Adv. Appl. Prob.} extbf{22}, 488-490.item[]Wesolowski, J. 2002a. On a functional equation related to anindependence property for beta distributions. extit{AequationesMath.} extbf{63}, 245-250.item[]Wesolowski, J. 2002b. The Matsumoto-Yor independence property forGIG and Gamma laws, revisited. extit{Math. Proc. Camb. Phil.Soc.} extbf{133}, 153-161.item[]Yeo, G.F., Milne, R.K. 1991. On characterizations of beta andgamma distributions. extit{Stat. Prob. Lett.}extbf{11}, 239-242.
 電子全文
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 可靠度理論上Kalmanfilter之研究 2 機率論介紹 3 關於某些條件期望值的刻劃 4 稀分更新過程之逆過程的探討 5 點過程的稀分

 無相關期刊

 1 關於分佈函數之探討 2 關於某些條件期望值的刻劃 3 Gamma及beta分佈的一些刻劃 4 稀分更新過程之逆過程的探討 5 實數上有關對稱性概念的探討 6 算子代數上的線性保正交性映射 7 混合實驗在對數對比模型之最適設計 8 財務衍生性商品定價與避險的動態半參數法 9 區間設限資料下應用多重插補法之無母數檢定 10 橢圓型方程的Trefftz及Collocation法 11 藉由一位不可靠的服務員之等待系統刻劃指數分佈 12 點過程的稀分 13 刪減區間資料下之韋伯參數的推論及其應用 14 使用伽瑪過程之雙變數加速退化試驗之最適策略 15 壽命具廣義伽瑪分配之型II 設限階段應力加速壽命試驗的可靠度分析

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室