|
1. Antille, G., Dette, H. and Weinberg, A. (2003). A note on optimal designs in weighted polynomial regression for the classical efficiency functions. J. Statist. Plann. Inference 113, 285-292. 2. Chang, F.-C. (1998). On asymptotic distribution of optimal design for polynomial-type regression. Statist. and Probab. Letters 36, 421-425. 3. Chang, F.-C. and Lin, G.-C. (1997). D-optimal designs for weighted polynomial regression. J. Statist. Plann. Inference 55, 317-331. 4. Dette, H., Haines, L.M. and Imhof, L. (1999). Optimal designs for rational models and weighted polynomial regression. Ann. Statist. 27, 1272-1293. 5. Dette, H., Melas, V.B. and Biedermann, S. (2002). A functional-algebraic determination of D-optimal designs for trigonometric regression models on a partial circle. Statist. and Probab. Letters 58, 389-397. 6. Dette, H., Melas, V.B. and Pepelyshev, A. (2002). D-optimal designs for trigonometric regression models on a partial circle. Ann. Inst. Statist. Math. 54, 945-959. 7. Dette, H., Melas, V.B. and Pepelyshev, A. (2004). Optimal designs for estimating individual coefficients-- a functional approach. J. Statist. Plann. Inference 118, 201-219. 8. Fang, Z. (2002). D-optimal designs for polynomial regression models through origin. Statist. and Probab. Letters 57, 343-351. 9. Fedorov, V.V. (1972). Theory of Optimal Experiments (Translated and edited by Studden, W.J. and Klimko, E.M.). Academic Press, New York. 10.Grossman, S.I. (1993). Calculus, 5th edition. Hartcourt Bruce, Orlando, Florida. 11.Hoel, P.G. (1958). Efficiency problems in polynomial estimation. Ann. Math. Statist. 29, 1134-1145. 12.Huang, M.-N.L., Chang, F.-C. and Wong, W.-K. (1995). D-optimal designs for polynomial regression without an intercept. Statist. Sinica 5, 441-458. 13.Imhof, L., Krafft, O. and Schaefer, M. (1998). D-optimal designs for polynomial regression with weight function x/(1+x). Statist. Sinica 8, 1271-1274. 14.Karlin, S. and Studden, W.J. (1966). Optimal experimental designs. Ann. Math. Statist. 37, 783-815. 15.Khuri, A.I. (2002). Advanced Calculus with Applications in Statistics}, 2nd edition. Wiley, New York. 16.Kiefer, J.C. and Wolfowitz, J. (1960). The equivalence of two extremum problems. Canad. J. Math. 12, 363-366. 17.Melas, V.B. (1978). Optimal designs for exponential regression. Math. Oper. Forsch. Statist. Ser. Statist. 9, 45-59. 18.Melas, V.B. (2000). Analytic theory of $E$-optimal designs for polynomial regression. In: Advances in Stochastic Simulation Methods, 85-116. Birkh"auser, Boston. 19.Melas, V.B. (2001). Analytical properties of locally $D$-optimal designs for rational models. MODA 6 -- Advances in Model-Oriented Data Analysis and Experimental Design (Edited by Atkinson, A.C., Hackl, P. and M"uller, W.G.), 201-209. Physica, Heidelberg. 20.Pukelsheim, F. (1993). Optimal Design of Experiments. Wiley, New York. 21.Silvey, S.D. (1980). Optimal Design. Chapman & Hall, London. 22.Wolfram, S. (2003). The Mathematica Book, 5th edition. Wolfram Media/Cambridge University Press.
|