跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/13 03:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭晉源
研究生(外文):Chin-yuan Guo
論文名稱:心電圖監測指標之研究
論文名稱(外文):Studies in the electrocardiogram monitoring indices.
指導教授:郭美惠郭美惠引用關係
指導教授(外文):Mei-hui Guo
學位類別:碩士
校院名稱:國立中山大學
系所名稱:應用數學系研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:47
中文關鍵詞:I(d)過程的EWMA管制圖Hurst參數I(d)過程的EWRMS管制圖GARCH模型RR區間
外文關鍵詞:RR-intervalI(d)-Process EWRMS control chartI(d)-Process EWMA control chartGARCH modelHurst parameter
相關次數:
  • 被引用被引用:4
  • 點閱點閱:243
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:2
據文獻中,心率資料具有自我相關的性質(self-similarity),其程度可由自我相關係數(Hurst參數)量化表示;另一方面,I(d)過程中的d值可以量度長相關的程度,在殘差值符合常態分佈的假設之下,其與自我相觀係數的關係式為H=0.5+d,本文第一部分,我們嘗試用EBP(Embedded Branching Process)方法來估計H值,進而求得I(d)過程的d值。而蒐集到的心率資料中,d值大約介於0.6~1之間,為了使資料平穩,我們將每筆資料差分0.5次之後,再觀察其基本統計量並對資料配適GARCH模型,因每分鐘心跳紀錄值為整數值,所以高度差分(0.8~0.9)次後的資料接近整數值,容易拒絕常態分佈的假設;因此在第二部分,我們以physionet上提供的RR區間資料,作0.5皆差分後重新估算d值,再利用王琪玲(2001)提出的I(d)過程EWMA及EWRMS管制圖來監測RR區間資料,其中I(d)過程的EWMA在常態假設之下超出管制線比例在可接受的範圍內;而I(d)過程的EWRMS管制圖的超出管制線比例則明顯與偏態及峰態係數有關。在常態分配的假設之下,兩類管制圖能有效的反應病人的平均心率變化及變異。
An recent finding shows that heart rate data possess self-similar property, which is characterized by a parameter H, as well as a long range dependent parameter d. We estimate H by the EBP(Embedded Branching Process) method to derive the fractional parameter d in the first part. The heart rate and R-R interval data are found to have high differencing parameter(d=0.8 ~0.9) and against the
normality assumption. Thus the heart rate and R-R interval data are first fractionally differenced of order 0.5 to achieve stationarity. In the second part, we analyze the
RR-interval data on the physionet and obtain the long range
parameters. After fractionally differencing 0.5 order, the EBP method is adapted to estimate the long range parameter d.

The EWMA and EWRMS control charts of the I(d) processes are constructed to monitor the heart rate mean level and variability, respectively for the 18 RR-interval data sets from the physionet. For the EWMA control chart the out of control percentages are chosen to the nominal probability. However, the out of control percentages are affected by the skewness and kurtosis of the process distribution for the EWRMS control carts. Generally speaking, the I(d)-EWMA and I(d)-EWRMS control charts provide a proper monitor system for heart rate mean level and variability.
1.緒論....................................................1
2.ARFIMA模型介紹與自我相似過程............................5
3.I(d)過程的EWMA管制圖與EWRMS管制圖......................13
4.實證結果...............................................19
5.結論...................................................22
參考文獻.................................................23
圖表.....................................................25
[1] Abry, p. Goncalves, P. and Flandrin, F.(1995). Wavelets, spectrum estimation and $1/f$ processes, in "Wavelets and Statistics, Lecture Notes in Statistics",Springer Verlag,New
York,p:15-30

[2] Bolis, C.L. Licinio, J.(1999). The Autonomic Nervous System. World Health Organization,
Geneva.

[3] Goldberger, A.L. Amaral, L.A. Glass, L. Hausdorff,J.M. Ivanov,P.C. Mark, R.G. Mietus, J.E. Moody, G.B. Peng, C.K. Stanley, H.E. PhysioBank PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation, vol: 101(23) p:215-220

[4] Joel Heinrich(2004). A Guide to the Pearson Type IV Distribution. Lecture Notes, University of Pennsylvania.

[5] Kun Hu, Plamen, C.h. Ivanov, Zhi Chen, Pedro Carpena, and H. Eugene Stanley (2001).Effect of trended fluctuation analysis. Physical Reviw E, vol 64(4 pt 1)02215

[6] Malcolm S. Thaler (2003). The only EKG book you''ll ever need, Lippincott Williams & Wilkins.

[7] Mandelbrot, B.B. and Wallis, J.R.(1969). Computer
experiments with fractional Gaussian noises. Water Resources Research, p:228-267

[8] Peng, C.K. Buldyrev, S.V. Havlin,S. Simons, M. Stanley, H.E. and Goldberger, A.L.(1994). Mosaic organization of DNA nucleotides. Physical Review E,vol 49 . No2 ,p:1685-1689

[9] Murad,S. Taqqu and Vadim Teverovsky (1998). On Estimating the Intensity of Long-Range Dependence in Finite and Infinite Variance Time Series.
A Practical Guide to Heavy Tails: Statistical Techniques and Applications, Birkhauser, Boston, p:177-217.

[10] Owen Dafydd Jones and Yuan Shen,(2003). Analyzing self-similarity in network traffic via the crossing tree.
southampton.

[11] Zhi Chen, Plamen Ch. Ivanov, Kun Hu,Eugene Stanley H., (2002). Effect of nonstationarities on detrended fluctuation analysis. Physical Review E, vol:65(4 Pt 1):041107

[12]陳志遠(2000). 心電圖的判別分析與RR區間高低頻譜功率比值的研究,國立中山大學應用數學系碩士論文。

[13]賴志傑(2001). 應用心率變異之頻譜分析監測手術後病人危險因子之研究,國立中山大學應用數學系碩士論文。

[14]王琪玲(2002). Statistical Control Charts of I(d)
Processes,國立中山大學應用數學系碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top