跳到主要內容

臺灣博碩士論文加值系統

(35.174.62.102) 您好!臺灣時間:2021/07/25 05:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃士偉
研究生(外文):Shi-wei Huang
論文名稱:以蜂巢式觸媒氧化氣相異丙醇之研究
論文名稱(外文):The Study of Catalytic Oxidation of Isopropyl Alcohol in an Air Stream over Honeycomb Catalyst
指導教授:樓基中樓基中引用關係
指導教授(外文):Jie-Chung Lou
學位類別:碩士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:189
中文關鍵詞:含浸法蜂巢式觸媒異丙醇反應動力式共沉澱法
外文關鍵詞:kinetic modelsactivity、selectivityimpregnation methodIsopropyl Alcohol
相關次數:
  • 被引用被引用:8
  • 點閱點閱:227
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
異丙醇是無色、易燃的液體、具有特殊氣味,可與水、酒精、乙醚、丙酮,與大部份有機溶劑混合,但不溶於鹽溶液中。為可燃性物質,燃燒後可能產生刺激性或毒性的氣體。皮膚吸收或由肺吸入可能導致中毒,蒸氣會引起頭昏甚至窒息。可用來製造丙酮和酚,也可應用在光電業、半導體業、表面塗料、合成樹脂、製造業、個人保養用品及化妝品等方面。

本研究以自製的觸媒氧化氣相異丙醇,探討觸媒之效能,並藉由操作因子的變動,觀察其對異丙醇轉化率之影響,再者進行活性衰退實驗,連續七天的反應觀察是否有轉化率衰退之情形,並藉由儀器的表面分析,探討衰退實驗前後之差別。最後則是進行反應動力之推導。

第一階段的研究目的為觸媒製備方法之篩選,本研究選用共沉澱法、蒸氣含浸法、臨界含浸法三種方法來製作觸媒。所採用的活性金屬為銅和銅鈰混合金屬等兩種,觸媒載體則為塊狀蜂巢式陶瓷,大小約為1cm3。藉由不同活性金屬、不同金屬負載量和不同製作方法,共製備出22種蜂巢式觸媒,觸媒氧化操作條件為:空間流速12000hr-1;氧氣含量21%;相對溼度25%;異丙醇進流濃度為1600ppm(3933mg/m3);操作溫度為100℃∼500℃,結果顯示蒸氣含浸法為較佳之製備方法。
經由第一階段之測試,初步挑選出由蒸氣含浸法製作的金屬負載量為20%銅鈰(Cu:Ce重量比7:3)觸媒為轉化率最佳之觸媒,進行第二階段之測試。

第二階段則進行操作參數之探討,以其找到最佳反應參數。操作參數範圍如下:
操作溫度:373K∼773K
進流濃度:250 ppm∼1600 ppm(613∼3933mg/m3,1atm、25℃)
空間流速:1500 hr-1∼12,000 hr-1
氧濃度:21 %∼ 40 %
水氣濃度:25 %∼31 %

發現轉化率隨著溫度的升高和氧氣濃度的升高而上升,但伴隨著進流濃度和空間流速及水氣濃度的增加,轉化率則有下滑之趨勢。

第三階段則是進行活性衰退實驗,在250℃∼350℃下三組七天的連續實驗,發現此自製觸媒並無轉化率下降之現象,並藉由X-光繞射分析儀(XRD)、Scanning Electron Microscopy(SEM)及Elemental Analyzer(EA)等儀器結果初步證實。
第四階段則是進行反應動力之探討,由power-rate law,和Mars - Van Krevelen Model來進行推導,結果發現由power-rate law模式較符合本研究之反應動力,另外在操作參數(異丙醇進流濃度、反應溫度、氧進流濃度)對反應速率的影響方面,經由實驗可知上述三種操作參數對反應速率皆有一定的影響性,異丙醇進流濃度越大、反應溫度越高、氧進流濃度越高,則所得之反應速率愈大。
ABSTRACT

Isopropyl Alcohol (denoted as IPA) is a valuable chemical product, which is used in the chemical industry such as synthetic resin, essential oils and surface paint. Moreover, factory of the production of photography and electronics are also the user of IPA.IPA is the typical pollutant emitted from those industrial processing . It is known to be causing severe irritation and burns and is suspected to have long-term effects such as bronchitis.

This study was to investigate the effect on conversion, deactivation of long-term test, selectivity of product and kinetics in oxidation of IPA over Cu and Cu/Ce catalysts supported on ceramic honeycomb. The explanation of results can be divided into several major parts as follows:

1. In the of selection catalyst, we find that 20%Cu/Ce catalysts prepared by wet- impregnation has the best conversion and
selectivity.
2. The conversion of IPA in catalytic reaction is increased with the increasing both of reaction temperature and influent concentration of oxygen but decreased with the going up of initial concentration of IPA, space velocity and relative humidity.
3. In the catalyst stability of long-term test, Cu/Ce catalysts had a good stability after 7 days reaction in heterogeneous reactor. The tests such as XRD, SEM and EA were also determined to verify the stability from surface of catalyst.
4. Two kinetic models, Power rate law and Mars-Van Krevelen model were used to fit the kinetic data of the decomposition of IPA. Power rate law is suitable to describe the catalytic decomposition of IPA under the operation range in this work.
目錄


第一章 緒論...............................1
1-1前言......................................1
1-2 研究緣起.................................2
1-3 研究目的及內容...........................3

第二章 文獻回顧 ...........................7
2-1 VOCs簡介 ...........................8
2-1-1 異丙醇之介紹 .................11
2-1-2 異丙醇之現況 .................15
2-2 VOCs的控制技術介紹 .................17
2-2-1 吸附法……………………………………….20
2-2-2 焚化法……………………………………….22
2-2-3 冷凝法……………………………………….27
2-2-4 化學洗滌法………………………………….30
2-3 觸媒製作探討 ...........................31
2-3-1 觸媒原理 ...........................31
2-3-2 觸媒之製作方法 . ................32
2-3-3載體之特性與選擇 ..................36
2-3-4 陶瓷材料………………………………………………….....37
2-3-5 擔體效應…………………………………….40
2-3-6 活性金屬…………………………………….41
2-4探討影響轉化率的因素 ..................43
2-4-1 觸媒的特性 ...........................43
2-4-2 VOCs的種類與濃度 ..................44
2-4-3廢氣中水氣含量的影響 ..................46
2-4-4 空間流速……………………………………..47
2-4-5 操作溫度……………………………………..47
2-4-6 廢氣中的氧含量……………………………..48
2-5觸媒焚化反應動力之探討 ..................50
2-5-1柱流式反應器基礎理論 ..................53
2-5-2微分型反應器 ..................55
2-5-3 觸媒異相反應模式 ..................56
2-5-4 Arrhenius 方程式 ..................62

第三章 研究方法與實驗設備 .........63
3-1 研究方法 ...........................63
3-1-1實驗規劃 ...........................68
3-1-2 實驗步驟與方法 ..................69
3-1-3 檢量線之製備……………………………….70
3-2 觸媒的製備 ...........................71
3-3實驗設備及藥品 ...........................76
3-3-1實驗系統裝置 ..................76
3-3-2研究用之試藥及氣體 ..................79
3-3-3主要分析儀器原理.......................81

第四章 結果與討論...........................87
4-1觸媒活性篩選...............................87
4-1-1 5%、10%、20%負載量的銅觸媒之比較......89
4-1-2 5%、10%、20%負載量的銅铈觸媒之比較....97
4-1-3 銅觸媒和銅鈰觸媒之比較……………………107
4-1-4 蒸氣含浸法之探討……………………………111
4-1-5自製觸媒之T50和T95之比較………………….116
4-2 觸媒製作成本之推估........................118
4-3 觸媒焚化異丙醇操作參數探討……………………119
4-3-1 進流濃度對轉化率之影響................119
4-3-2 空間流速對轉化率之影響………………………122
4-3-3 水氣含量對轉化率之影響……………………124
4-3-4 氧氣含量對轉化率之影響……………………126
4-4觸媒長期活性衰退的探討………………………….129
4-4-1 觸媒衰退現象…………………………………129
4-4-2 掃描式電子顯微鏡分析(SEM).............132
4-4-3 表面元素分析(EDS).....................134
4-4-4 元素分析(EA)..........................136
4-4-5 BET比表面積分析……………………………..137
4-5 觸媒焚化反應動力模式探討.................138
4-5-1 Power-rate law........................138
4-5-2 Mars-Van Krevelen model...............143
4-6 操作參數(進流濃度、溫度、氧濃度)對反應速率之影響............................................147
4-6-1 進流濃度對反應速率之影響 .........147
4-6-2 操作溫度對反應速率之影響..............147
4-6-3 氧濃度對反應速率之影響................148

第五章 結論 ...........................153

第六章 參考文獻……………………………......................156
附錄A 異丙醇之物質安全資料表………………………………….A-1

附錄B 分析物種之檢量線………………………………………….B-1

附錄C 口試委員意見及答覆……………………………………….C-1
第六章參考文獻

1.【法規類別】空氣污染防制法規
2. Don, J. A. and Feenstra L., “ Odour abatement through
biofitration ”,In Proceedings of Symposium on Characterization and Control of Odoriferous Pollutants in Process Industrirs : Lonvain-LaNeuve(Belgium), April, 1984.
3. Devinny J. S., Deshusses M. A., Webster T. S.“Biofiltration for air pollution control”, Lewis Publishers, 1998.
4. 許世杰等,「生物濾床應用於高科技產業揮發性有機廢氣之研究」,新竹縣環保局2003年高科技產業研討會論文集,pp39~47,2003。
5. 吳信賢、林樹榮,「高級氧化洗滌技術」,經濟部工業局,空氣污染防制處理技術講習會講義。
6. Radian Corp,“Control techniques for volatile organic emission from stationary source”, USEPA, EPA-450/2-78-022, 1978.
7. 劉國棟,「VOC 管制趨勢展望」,工業污染防治,第48 期,p.15~31,1992。
8. 行政院環保署,惡臭防制技術參考手冊第三冊,民國77年。.
9. http://www.iosh.gov.tw/data/msds/msds0080.pdf
10. http://proj.moeaidb.gov.tw/eta/html/A03a01.htm
11. 王佑靖、邱宗文、繆佐君、余秉量,「化工場VOCs 廢氣收集處理系統設計與實例」,工業污染訪防治,第67 期,七月,pp.85 ∼95,1998.
12. 「臭氣處理程序設計評估技術」,工研院化工所,1991。
13. 李秉傑、邱宏明、王奕凱 (1993,10),「非均勻系催化原理與應用」,渤海堂文化公司。
14. 吳榮宗 (1989),「工業觸媒概論」,國興出版社。
15. 中華民國僑務委員會—華僑經貿投資網址
http://gcbn.ocac.gov.tw/Documents/people/p3-3-2.asp
16.http://www.superiortechceramics.com/materials/cordierite.shtml. 17.http://www.ceramicindustry.com/CDA/ArticleInformation/features/BNP__Features__Item/0,2710,29445,00.html
18.http://www.uwrf.edu/~wc01/cordierite.htm
19.http://www.morganadvancedceramics.com/materials/cord.htm
20.http://www.ferroceramic.com/ceramic-materials/index.cfm/fuseaction/t_04/CFID/705969/CFTOKEN/98811069.htm
21. 顏駿翔,「添加Mn/γ-Al2O3於觸媒濕式氧化程序處理 2,4-二氯酚水溶液之研究」,國立中山大學環境工程研究所碩士論文,2001。
22. Gil. A., A. Diaz., L. M. Gandia, and M. Montes,“Influence of the Preparation Method and Nature of the Suppor on the Stability of Nickel Catalyst “, Applied. Catalysis:A General 109,No.2,pp.355-361 ,1994.
23. 李昆展,「以稻穀灰分初濕含浸製備擔體銅觸媒之研究」,國立中央大學化學工程研究所碩士論文,2001。
24. Guerreiro-Ruiz, A., I. Rodrigz-Ramoz, and Fierro, ,“Dehydrogenation of Methanol to Methyl Formate over Supported Copper Catalyst “, Applied. Catalysis:A General 72,No.1,pp.119-128 ,1994.
25. G. I. Golodets, “Heterogeneous Catalytic Reactions Involving Molecular Oxygen”, New York, Elsevier, 1983.
26. A. A. Balandin, “Advances in Catalysis”, New York, Academic , V 10, p.96 ,1958.
27. A. A. Balandin, “Advances in Catalysis”, New York, Academic, V19, p.1 ,1969.
28. R. Prasad, L. A. Kennedy, E. Ruckenstein, Catal. Rev.-Sci. Eng., 1984.
29. J. H. Lee, D. Trimm, N. W. Cant, “The catalytic combustion of methane and hydrogen sulphide”, Catal. Today,Vol.47 ,NO1 , p353~357 ,1999.
30. R. J. Farrauto, M. C. Hobson, T. Kennelly, E. M. Waterman, “Catalytic chemistry of supported palladium for combustion of methane”, Applied. Catalysis:A General 32 ,No2 ,p 81~227 ,1992.
31. R. H. Ribeiro, M. Chow, R. A. Dalla Beta., “Kinetics of the complete oxidationmethane over supported palladium catalyst”, Journal of Catalysis148 ,No1 ,p146~277 ,1994。
32. R. F. Hicks, H. Qi, M. L. Young, R. G. Lee, “Effect of catalyst structure on methane oxidation over palladium on alumina”,. Journal of Catalysis 95,No2 ,p122~280,1990。
33. K.Ramanathan and J. J. Spivey , “Catalytic Oxidation of 1,1-Dichloroethane ” ,Combust. Sci and Tech. , vol.63 ,No1 ,p.247-255 , 1989.
34.Jose Manuel Gallardo-Amores ,Tiziana Armaroli ,Gianguido Ramis ,Elisabetta Finocchio ,Guido Busca , “A study of anatase-supported Mn oxide as catalysts for 2-propanol oxidation” , Applied Catalysis B:Environmental 22 ,No 4 ,p249∼259,1999.
35. Gonzalez-Velasco, J.R., Aranzabal A., Lopez-Fonseca R., Ferret, R., andGonzalez-Marcos, J.A. , “Enhancement of the catalytic oxidation of hydrogen-lean chlorinated VOCs in the presence of hydrogen-supplying compounds”, Applied Catalysis B:Environment 24,No 1 p.33-43, 2000.
36.Samih A .Halawy,Mohamed A. Mohamed,Suzan F.Abd El-Hafez, “Dehydrogenation of isopropyl alcohol over Co-Ni/Mg oxide catalyst”Journal of molecular Catalysis 94 ,No 2,p191-201 ,1994.
37. 陳敏、羅夢飛、袁賢鑫,「載體對負載鈀觸媒催化劑的CO氧化活性的影響」,環境科學學報,第18卷,第四期,p.421-424,1998。
38. Yan Liu, Zhaobin Wei, Zhaochi Feng , “Oxidative Destruction of Chlorobenzene and o-Dichlorobenzene on a high active catalyst :MnOx/TiO2-Al2O3 ”, Journal of Catalysis.202 ,No 1 , p.200-204 ,2001。
39. Baldi Marco, Finocchio, E., Milella, F., and Busca, G., “Catalytic Combustion of C3 hydrocarbons and oxygenates over Mn3O4”, Applied Catalysis B:Environment 16,No 1, p.43-51, 1998.
40. Nagata, H., Takakura, T., Tashiro, S., Kishida, M., Mizuno, K., and Wakabayashi, I.T., “Catalytic oxidative decomposition of chlorofluorocarbons (CFCs) in the presence of hydrocarbons”, Applied Catalysis B:Environment 5, No1-2, p.23-31, 1994.
41. Tichenor, A. and Palazzolo, M.A., “Destruction of Volatile Organics componnds via Catalytic Incineration”, Environment Progress, Vol6,No3,p172-176, 1987.
42.V.Blasin-Aube, J.Belkouch, L.Monceaux, “General study of catalytic oxidation of various VOCs over La0.8Sr0.2MnO3+x perovskite catalyst-influence of mixture” , Applied Catalysis B:Environment 43, No 2, p175-186,2003.
43. Patterson, M. J., Angove, D.E., Cant, N.W. and Nelson, P.F. “The formation of benzene and chlorobenzene during the oxidation of toluene over rhodium based catalysts”, Applied Catalysis B:Environment 20, No2, p.123-131, 1999.
44. Anderson, R.B., Stein K.C., Feenan J.J. and Hofer L.J.E. “Industry Engineering Chem.”, 53, 809, 1961.
45. 王清輝,「銅-鉬觸氧化物擔體觸媒運用於氧化分解二硫化二甲基之研究」,國立成功大學化學工程研究所博士論文,六月,1998
46. Rund W. van den Brink “Formation of polychlorinated benzenes during the catalytic combustion of chlorobenzene using a Pt/γ-Al2O3 catalyst” , Applied Catalysis B: Environment 19, No 3-4, p.219-226, 1998.
47. M. Kulazynski , J.G. van Ommen “Cataltyic combustion of trichloroethylene over TiO2-SiO2 supported catalysts” Applied Catalysis B :Environmental 36 ,No 3 , p.239-247, 2002.
48. James J. Spivey, “Complete Catalytic Oxidation of Volatile Organics”, Industrial Engineering Chemical Research, Vol.26, No.11, p.2165-2180, 1987.
49. Robert, J.F., et al, “Environmental Catalysts”, C�tEN, September 7, pp.34-44, 1992.
50. 環保署譯,「惡臭防制技術參考手冊(Ⅰ)」,pp.56,六月,1988。
51. 王大中、顧洋、李嘉平,「一甲胺氣體氧化反應之研究」,第七屆空氣污染控制技術研討會,pp.595-614,九月,1990。
52. Spivey James J., Agarwal S.K. and David Tevault E., “Kinetics of the Catalytic Destruction of Cyanogen Chloride”, Applied Catalysis B: Environmental 5, No 4,p.389-403, 1995.
53. Heyes, C.J., Irwin, J.G., Johnson, H.A. and Moss, R.L., “The Catalytic Oxidation of Organic Air Pollutants. PartⅠ. Single Metal Oxide Catalysts”, J. Chem. Tech. Biotechnology 32, p.1025-1033, 1982.
54. 江惠中,「有機廢氣觸媒焚化及廢熱回收」,有機廢氣觸媒焚化處理技術研討會,p.4-1∼4-25,三月,1989。
55. 呂立德,「化工動力與化工熱力」,立功出版社,六月,1991。
56.黃柳青譯,「化工動力學與反應設計下冊」,科技出版社,p.120-123,1993。
57. Gangwal, S.K., Mullins, M.E. Spivey, j.j. and Caffrey, P.R., “Kinetics and Selectivity of Deep Catalytic Oxidation of n-Hexane and Benzene”, Applied Catalysis B: Environmental 36, No 3, p.231-247, 1988.
58.Spivey James J., Agarwal S.K. and David Tevault E., “Kinetics of the Catalytic Destruction of Cyanogen Chloride”, Applied Catalysis B: Environmental 5,No 3 ,p.389-403, 1995.
59.Chang, C. and Weng, H., “Deep Oxidation of Toluene on Perovskite Catalysts”, Ind. Eng. Chem. Res., Vol.32, pp.2930-2933, 1993.
60. 范雅淳,「醇類在Pt/BN觸媒上之深度氧化」,國立台灣大學化學工程研究所碩士論文,六月,2001。
61.A. Wollner, F. Lange, H. Schmelz and H. Knozinger, “Characterization of Mixed Copper-Manganese Oxides Supported on Titania Catalysts for Selective Oxidation of Ammonia”, Applied Catalysis A: General 94, No 1, p.181-203, 1993.
62. R. Zhang and T. A. Schwarz, “Design of Inhomogeneous Metal Distribution Within Catalyst Particles’’, Applied Catalysis A: General.91, No1,pp.57, 1992
63. Spivey James J., Agarwal S.K. and David Tevault E., “Kinetics of the Catalytic Destruction of Cyanogen Chloride”, Applied Catalysis B: Environmental 5,No 4, p.389-403, 1995.

64. D. Pope, D.S. Walker and R.L. Moss, “Evaluation of Cobalt Oxide Catalysts for the Oxidation of Low Concentration of Organic Compounds”, Atmospheric Environment, Vol.10, NO.6, pp.951-956, 1976.
65. 蔡文田、邱三、張慶源,「含1,1,1-三氯乙烷蒸氣之觸媒焚化處理」,第十二屆空氣污染控制技術研討會論文集,pp.680-685,1995。
66.楊昇府,「以Cu/Ce觸媒應用於氣相氨氧化及其反應動力之研究」,國立中山大學環境工程研究所碩士論文,六月,2004。
67.黃佩軒,「以Cu金屬塗覆爐石處理氨氣之研究」,國立中山大學環境工程研究所碩士論文,六月,2003。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top