跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/07/30 02:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何嘉達
研究生(外文):Chia-Ta Her
論文名稱:鋼鐵工業懸浮微粒物化特性及暴露評估
論文名稱(外文):Physicochemical Properties and Exposure Assessment of Suspended Particles in Steel Plants
指導教授:袁中新袁中新引用關係
指導教授(外文):Chung shin Yuan
學位類別:碩士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:145
中文關鍵詞:物化特性分析懸浮微粒採樣健康風險推估鋼鐵工業暴露評估
外文關鍵詞:particulate matter samplingexposure assessmenthealth riskphysical and chemical characteristicssteel industry
相關次數:
  • 被引用被引用:29
  • 點閱點閱:706
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在探討高雄市都會區鋼鐵工業煉鋼製程對高風險作業族群之粒狀物暴露及健康風險,選擇一貫作業煉鋼廠、電弧爐煉鋼廠兩家不同製程之工廠,進行懸浮微粒採樣與分析,探討煉鋼工廠作業區內、外及廠區周界(上下風二點)間懸浮微粒濃度變化及物化特性分析(如:粒徑分佈、金屬成份、水溶性離子成份及碳成份),建立本土鋼鐵工業粒狀污染物之指紋資料庫。為達成上述目標,本研究同步實施個人暴露採樣(personal sampling)和定點環境採樣(environmental sampling)。個人暴露採樣係配帶可計時型個人採樣器進行作業環境中懸浮微粒之暴露採樣,而定點環境採樣雖容易受到環境因素(如:廠房密閉性、通風方式、氣象條件等)之影響,但卻能反映整體環境污染現況,藉以瞭解環境中粒狀污染物對於個人暴露量之影響。此外,本研究依據鋼鐵工業員工在作業環境之粒狀污染物暴露濃度,評估員工(作業人員及行政人員)之粒狀污染物吸入暴露量,另由作業環境中特定重金屬之濃度,配合相關暴露參數蒐集(如:暴露頻率、暴露期間、體重參數及平均時間等),並參考國外毒理資料庫(致癌斜率係數及參考劑量),進行特定重金屬致癌與非致癌風險推估。
由鋼鐵工業各作業區採樣結果得知,作業區內懸浮微粒濃度(PM1.0、PM10、TSP)以電弧爐場最高,其污染情形在進料及出料時尤其嚴重,其中PM1.0濃度介於53.3~195.6 μg/m3,PM10及TSP濃度範圍分別為365.7~550.0 μg/m3與1085.5~2755.0 μg/m3;作業區外PM10及TSP濃度皆以燒結場最高,其值分別介於77.5~117.4 μg/m3與1202.8~1784.6 μg/m3。另由廠周界懸浮微粒(PM10 & TSP)監測結果顯示,鋼鐵工廠(含一貫作業煉鋼廠及電弧爐煉鋼廠)普遍有超標的情形,因此有必要針對製程操作及粒狀物收集方式加以檢討改進。
由各作業區懸浮微粒粒徑分佈結果顯示,高爐場粒徑分佈呈現雙峰分佈,燒結場呈現單峰分佈,而原料堆置場則呈現單峰(3.2~10 μm)或雙峰分佈(0.32~1.8 μm與3.2~10 μm)。另由作業區懸浮微粒指紋(PM2.5、PM2.5-10、TSP)結果得知,一貫作業煉鋼廠(高爐場、燒結場、原料堆置場)主要化學組成為Fe、Ca、SO42-、NO3-、Ca2+、EC,而電弧爐煉鋼廠(電弧爐場)則為Fe、Ca、SO42-、NO3-、Ca2+、OC。
由懸浮微粒個人暴露濃度及吸入暴露量結果得知,作業區員工暴露程度以原料堆置場最高,燒結場最低;至於行政區亦為原料堆置場最高,燒結場最低,因此建議在原料堆置場作業之員工必須佩帶適當防護器具加強自我保護,減低暴露造成健康上的不良影響。此外,就作業區內重金屬平均致癌及非致癌風險而言,一貫作業煉鋼廠(含高爐場、燒結場及原料堆置場)及電弧爐煉鋼廠(電弧爐場)作業員工暴露Cr6+平均致癌風險皆超過可接受致癌風險標準(10-5~10-6),暴露Mn金屬之危害指數亦較其它金屬高出許多,其中電弧爐場作業員工同時暴露Cr6+及Ni之致癌風險皆超過標準,且暴露Mn之危害指數最高且超過危害指數標準值(>1)。
鋼鐵工業懸浮微粒污染之改善策略,可從作業區內污染減量著手,配合生產操作管理、環境監測及暴露評估、使用低污染性燃料、改善二次集塵設備、提高作業區地面清掃頻率、加強車輛進出門禁控管等,期能有效降低污染源逸散情形。此外,定期實施作業區內懸浮微粒濃度監測,確實要求員工佩帶適當防護器具,藉以避免員工暴露於高污染作業環境時間過長,降低員工之暴露及健康風險。
關鍵詞:鋼鐵工業、懸浮微粒採樣、物化特性分析、暴露評估、健康風險推估
The objective of this study was to investigate the exposure assessment and health risk of particulate matter emitted from steel industry for high-risk inhabitants living in metro Kaohsiung. A steel plant and an electric arc plant were selected for conducting the sampling of particulate matter (PM). The physical and chemical properties of PM sampled at the working place and at the fence of selected plants were also analyzed to establish the fingerprints of PM in the steel industry. In order to accomplish this study, both personal sampling and environmental sampling were conducted in steel plants. Personal exposure sampling was undertaken at working places, while the conduction of environmental sampling might affected by various uncertain environmental factors (such as meteorological condition and other emission sources), but it could characterize the overall environmental situation and help exposure assessment. Moreover, The exposure of employers (including manufacturing workers and supporting staffs) could be further assessed based on the concentration and duration of PM exposure. Specific metal concentration was obtained from working environment, searching for exposure parameter (such as exposure frequency, exposure duration, body weight, average time, and etc.) and toxicity database (e.g. cancer slope factor and reference dose). The data could be used for assessing both cancer risk and non-cancer risk of specific heavy metal.
Sampling data obtained from working places showed that the highest PM concentration were observed during the electric arc process, especially the charging and discharging procedures. The concentration of PM1.0, PM10, and TSP at the working places were 53.3~195.6 μg/m3 ,365.7~550.0 μg/m3, and 1085.5~2755.0 μg/m3, respectively. Measured at the outdoor environments of working places, the highest PM10 and TSP concentration, ranging from 365.7~550.0 μg/m3 and 1085.5 ~2755.0 μg/m3, were observed at the sinter plants of a steel manufacturer. Sampling data obtained at the fence of steel plants (a steel plant and electric arc plant) indicated that the concentration of PM10 and TSP exceeded the ambient air quality standards. Modification of manufacturing process and improvement of PM collection system are highly required to reduce the concentration level as well as the emission of PM.
Results of fingerprint of PM (PM2.5, PM2.5-10, TSP) obtained from working places showed that iron, calcium, sulfate, nitrate, calcium ion, and elemental carbon were the major chemical content of PM at the melting plant, the sinter plant, and the storage field. While, iron, calcium, sulfate, nitrate, calcium ion, and organic carbon were the major chemical content of PM at electric arc plant.
Results of personal exposure concentration and exposure dose of PM showed that the highest exposure level of both manufacturing workers and supporting staffs were observed at the storage field, while the lowest exposure level was found at the sinter plant. Therefore, enforcement of wearing maskers and/or shelters at the storage field is also highly recommended to prevent manufacturing workers from the exposure of high-level PM at working places. Moreover, the cancer risk of manufacturing workers exposured to hexavalent chromium (Cr6+) at the melting plant, the sinter plant, the storage field, and the electric arc plant exceeded acceptable cancer risk standard (10-5~10-6), while the hazard index of manganese (Mn) was much higher than other metals.Meanwhile, exposuring to Cr6+, Ni, and Mn at the electric arc plant also exceeded acceptable standards (Cr6+ and Ni:10-5~10-6 , Mn:1).
Several control strategies, including pollution reduction measures such as the usage of clean fuel, process modification, the improvement of collection system, the enhancement of manufacture management, the conduction of environmental monitoring and exposure assessment, floor cleanup and truck entrance management, are recommended to improve the contamination of PM at working places and surrounding environments for metallurgic industries. Moreover, enforcement of wearing maskers and/or shelters at high-risk environments is also highly recommended to prevent manufacturing workers from the exposure of high-level PM at working places.
Keywords: steel industry, particulate matter sampling, physical and chemical characteristics, exposure assessment, health risk
中文摘要………………………………………………………………..Ⅰ
英文摘要………………………………………………………………..Ⅲ
目錄…………………………………………………………………....Ⅴ
表目錄………………………………………………………………....Ⅸ
圖目錄………………………………………………………………..ⅩⅡ
第一章 前言……………………………………….…………………1-1
1-1 研究緣起………………………………….………………..1-1
1-2 研究目的及流程…………………………….……………..1-2
第二章 文獻回顧………….…………….……………………………2-1
2-1 鋼鐵工業製程介紹………………………...…………….…2-1
2-1-1 一貫作業煉鋼廠…………………………..………….2-1
2-1-2 電弧爐煉鋼廠…………………...……………………2-6
2-2 鋼鐵工業污染源及特性……………………………………..2-8
2-2-1 一貫作業煉鋼廠………………………………..…..…….2-8
2-2-2 電弧爐煉鋼廠…………………………………….……....2-9
2-3 懸浮微粒性質…………………………………………….….2-11
2-3-1 懸浮微粒定義…………………………………….….2-11
2-3-2 懸浮微粒種類………………………………….…….2-11
2-3-3 懸浮微粒運動特性………………………………..…2-13
2-3-4 懸浮微粒形成機制………………………………..…2-15
2-3-5 懸浮微粒之污染來源…………………………….....2-16
2-4 懸浮微粒對人體健康之危害…………………………….…2-17
2-5 懸浮微粒物化特性…………………………………….……2-22
2-5-1 懸浮微粒質量濃度……………………………………2-22
2-5-2 懸浮微粒粒徑分佈……………………………………2-23
2-5-3 懸浮微粒化學成份…………………………………..2-23
2-5-4 懸浮微粒毒理機制…………………………………..2-26
2-6 鋼鐵產業相關研究成果…………………………………….2-26
2-7 懸浮微粒暴露評估………………………………………….2-31
2-7-1 暴露評估定義……….……………………………….2-31
2-7-2 暴露評估方法….…………………………………….2-32
2-8 懸浮微粒法規標準….………………………………………2-35
2-9 懸浮微粒健康風險推估…………………………………….2-35
第三章 研究方法與設備…………………………………...……….3-1
3-1 懸浮微粒採樣規劃……………………………………………3-1
3-1-1 定點環境採樣…………………..…………………….3-1
3-1-2 個人暴露採樣……………………..………………….3-1
3-1-3 採樣設備類型及配置………………………………….3-3
3-2 懸浮微粒成份分析方法………...……………….…………3-9
3-2-1 金屬成份分析……………………………………..…3-9
3-2-2 水溶性離子成份分析……………………………….3-10
3-2-3 碳成份分析………………………………………….3-11
3-3 品保與品管……………………………………………...…3-12
3-3-1 採樣方法品保與品管…………………………...….3-12
3-3-2 分析方法品保與品管…………………..………... 3-14
3-4 生活型態問卷調查……………………...………………….3-18
3-5 懸浮微粒暴露量及風險推估計算方式……………………..3-20
第四章 結果與討論……………………..…………………........4-1
4-1 作業環境懸浮微粒監測結果…………………………………4-1
4-1-1 一貫作業煉鋼廠懸浮微粒濃度……………………….4-1
4-1-2 電弧爐煉鋼廠懸浮微粒濃度...………………………4-2
4-2 個人暴露採樣監測結果………………………………………4-4
4-2-1 一貫作業煉鋼廠個人暴露濃度……………………….4-4
4-2-2 電弧爐煉鋼廠個人暴露濃度………………………….4-6
4-3 廠區周界懸浮微粒監測結果…………………………………4-7
4-3-1 一貫作業煉鋼廠周界懸浮微粒濃度………………… 4-7
4-3-2 電弧爐煉鋼廠周界懸浮微粒濃度 ……………………4-9
4-4 作業環境內懸浮微粒粒徑分佈結果………………...……4-11
4-4-1 一貫作業煉鋼廠懸浮微粒粒徑分佈…………………4-11
4-4-2 電弧爐煉鋼廠懸浮微粒粒徑分佈….……………….4-14
4-5 懸浮微粒化學成份分析結果……………………………….4-16
4-5-1 一貫作業煉鋼廠懸浮微粒化學成份…………………4-16
4-5-2 電弧爐煉鋼懸浮微粒化學成份………..…………..4-25
4-6 生活型態問卷調查結果…………………………………….4-36
4-7 懸浮微粒暴露量評估……………………………...……….4-37
4-7-1 個人暴露量評估方式………………………………...4-40
4-7-2 個人暴露量評估結果………………………………...4-40
4-8 定點環境與個人暴露濃度與法規標準探討………………..4-50
4-9 作業環境內(特定重金屬)風險推估結果................4-52
4-9-1 致癌風險推估…………………………………………4-52
4-9-2 非致癌風險推估………………………………………4-58

第五章 結論與建議.......................................5-1
5-1 結論................................................5-1
5-2 建議................................................5-3
參考文獻………………………………………………………………R-1
附錄A 懸浮微粒採樣及分析紀錄表………………………………...A-1
附錄B 化學成份分析紀錄表………………………………………...B-1
附錄C 離子成份分析檢量線………………………………………...C-1
附錄D 生活型態問卷調查內容……………………………….……..D-1
附錄E 採樣期間風向資料…………………………………….……..E-1
附錄F 鋼鐵工業懸浮微粒採樣現場照片…………………….……..F-1
“Air Quality Criteria for Particulate Matter,” National Air Pollution Control Administration, Pub. No. AP-49, 1969.
Adams, H.S., M.J. Nieuwenhuijsen, R.N. Colvile, “Determinants of fine particle (PM2.5) personal exposure levels in transport microenvironments, London, UK”, Atmos. Environ., Vol. 35, pp.4557-4566, 2001.
California Offiec of Environmetal Hazard Assessment, OEEHA.
Chow, J.C., J.G. Watson, Z.Q. Lu, D. H. Lowenthal, C. A Frazier , P.A. Solomon , R. H Thuillier, and K. Magliano,”Descriptive analysis of PM2.5 and PM10 at Regionally Representative Locations during SJVAQS/ AUSPEX,” Atmos. Environ., Vol. 30, No. 12 , pp.2079-2112, 1996.
Christen, K.A., H. Livebjerg, ‘‘A Field Study of Submicron Particles from the Combustion of Straw’’ , Aerosol Sci. and Technol., Vol. 25(2), pp.185-199, 1996.
Dockery, D.W. “Effects of Inhaled Particles on Respirator Health of Children”, American Review of Respiratory Diease, pp.587-594, 1989.
International Commission on Radiological Protection (ICRP), 1981.
Michael Brauer, Sumeet Saksena, “Accessible tools for classication of exposure to particles”, Chemosphere Vol. 49, pp.1151-1162, 2002.
Ott , W.R. “Total Human Exposure”, Environ. Sci. and Technol., Vol. 19, pp.880-886, 1985.
Qin, Y., L.Y. Vhan, ”Traffic Source Emission and Street Level Air Pollution in Urban Areas of Guangzhou South China”, Atomos. Environ., Vol. 27, pp.275-282, 1993.
Solomon, P.A., J.L. Moyers, “A Chemical Characterization of Wintertime in Phoenix, Arizona,” Atmos. Environ., Vol. 20, pp.207-213, 1986。
Smith, Roy L. ”Risk-based concentrations:prioritizing environmental problems using limited data”, Toxicology, Vol. 106, pp.243-266, 1996.
Schwartz, J. “Air Pollution and Daily Mortality:A Review and Meta Analysis”, Environment Research, pp.36-52, 1994.
Tanimoto, T., T. Hirai, H. Goto, S. Matsuhashi, Y. Tarui,”The Study of Suspended Particulate Matter from the Stationary Pollution Source”, J. Jpn, Appl. Phys., 32, 4078, 1993.
The United States Environmental Protection Integrated Risk Information System (US EPA IRIS) , http://www.epa.gov/iris/.
U.S. Environmental Protection Agency, Guidelines for the Health Risk Assessment of Chemical Mixtures, 1986.
U.S. Environmental Protection Agency, Exposure Factors Handbook, 1997.
U.S. Environmental Protection Agency, Final Guidelines for Exposure Assessment, 1986.
U.S. Environmental Protection Agency, “Receptor Model Source Composition Library”, Environmental Protection Agency Research Triangle Park, NC, U.S. Department of Commerce National Technical Information Service (NTIS), EPA-450/4 -85-002, 1984.
Vanloon, J.C. ”Selected Methods of Trace Metal Analysis:Biological and Environmental Samples, ”John Wiely and Sons, Inc., 1985.
Wicken, A.J., S.F. buck, “Report on a Study of Environmental Factors Associated with Lung Cancer and Bronchitis Mortality in Areas of North east England”, Tobacco Research Council , 1964.
Yatin, M., S. Tuncel, N.K. Aras, I. Olmez, and S. Aygun, “Atomospheric Trace Element in Ankara, Turkey:1. Factors Affecting Chemical Composition of Fine Particle”, Atmos. Environ., Vol. 34, pp.1305-1318, 2000.
高雄市固定污染源控制技術輔導及推廣計畫,高雄市政府環境保護局,1999。
高雄市空氣品質管理計畫,高雄市政府環境保護局,2000。
行政院勞工委員會,“勞工作業環境空氣中有害物容許濃度標準”,1995。
行政院環境保護署,”空氣品質標準”,1999。http://w3.epa.gov.tw/epalaw/
宋國安,”都會地區粒狀物特性之研究” ,臺灣大學環境工程研究所碩士論文,1980。
蔡瀛逸,”大氣懸浮微粒中鉛元素之研究”,第九屆空氣污染控制技術研討會論文專輯,pp.245-256,1992。
袁中新、黃明和、鄭夙雯、梁喬凱、陳敏宗,”中鋼鋁業廠區內懸浮微粒採樣及污染源解析” ,中鋼鋁業公司研究報告,2002。
蔣本基、張子琦,”懸浮微粒污染源與氣象因子相關性研究”,第十三屆空氣污染技術控制研討會論文專輯,pp557-566,1996。
李芝珊,”氣膠與健康”,環保科技資訊,1992。
陳友剛,”微量粉塵對健康之影響” ,勞工安全衛生研究所,1994。
中國鋼鐵公司廠外周界測站監測報告,1~2月份,2002。
郭育良,”職業病概論”,華杏出版股份有限公司,1998。
陳美如,”高速公路收費站人員及加油站作業員工揮發性有機物質之暴露危害評估”,成功大學環境醫學研究所碩士論文,2001。
謝徨麒,”固定污染源排放金屬元素之特徵”,碩士論文,國立成功大學環境工程研究所,2001。
樓基中、袁中新,”台灣地區懸浮微粒空氣污染問題及防治之研究”,行政院環境保護署研究報告,1995。
鄭曼婷、鄭光宏、方國權、莊秉潔,”大氣懸浮微粒及水溶性陰陽離子之日夜乾沉降特性”,第十三屆空氣污染控制技術研討會論文專輯,pp.1145-1153,1996。
石東生、Smith T.J.、黃錦章、鄭蓉瑛、葉文裕、陳正堯,”台灣地區錳鋼及矽錳鋼製造工廠勞工錳暴露追追調查研究”,勞工安全衛生研究季刊,1997。
袁中新、 劉山豪,”高雄都會區消光係數與能見度量測及細微粒污染源貢獻量解析”,國立中山大學環境工程研究所碩士論文,1998。
謝俊明、周劍平,”電弧爐作業勞工重金屬暴露調查研究”,勞工安全衛生研究所,2002。
葉士鳴,”大氣中懸浮微粒含碳成份之分佈與來源”,碩士論文,國立成功大學環境工程研究所,2002。
李崇德,”臺灣北部都會區氣膠微粒粒徑分佈之污染源特性分析”,行政院環境保護署,1995。
李俊德、尤鴻昌、李文智,”鍋爐煙道廢氣重金屬之排放特徵”,氣膠研討會,pp.152-161,1997。
李俊璋,”有害空氣污染物健康風險評估及管理模式之探討”,工業污染防治,第68期,1998。
阮國棟、簡慧貞,”健康風險暴露評估準則之建立”,工業污染防治,第50期,1994。
王景良,”中部空品區污染源逸散粉塵的組成分析”,碩士論文,國立中興大學環境工程學系,2000。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top